

Modernizing an Application

The process of replicating and modernizing Norske
Sanitetskvinner’s web application

GRUPPETID:

Andersen, Henriette
Risdalen, Bjørnar
Sjursen, Hanne P.
Staurheim, Trym E.

SUPERVISOR

Nilsen, Hallgeir

University of Agder, 2021

Faculty of Social Sciences

Department of Information Systems

Preface

This report is a presentation of the work we have done in our last semester at the bachelor’s

program at IT and information system and a representation of the competence and knowledge

we have acquired over the past three years at the University of Agder. In that regard, we want

to thank the people that have helped us along the way to accomplish a successful project.

First off, we want to thank Knowit Sør for giving us the opportunity to work for and

cooperate with them on this project. Knowit has offered their help and advice throughout the

project, especially in the initial phase when we needed it the most. They have also been a

positive resource for us when we have asked for help on other tasks and assignments.

We would like to give our supervisor and Product Owner Thomas Andreé Wang a special

thanks for giving us his guidance and valuable tips throughout the project. He has been both

flexible and helpful when we have been stuck in pipelines and design choices and given us his

best recommendations and practices to help us improve both the process and the product. We

are highly appreciative of his effort to make us succeed in the project.

We would also like to thank our supervisor at UiA, Hallgeir Nilsen, for always being available

for supervision, staying favorable to the team's effort, and providing us with valuable

feedback during both the project and throughout the last three years at the university.

At last, we want to thank our families, friends, and better halves for supporting us, being

available for us when we needed to cry, laugh, or rant - both over the project and life in

general. This has been of great importance to help us keep our motivation running when times

have been challenging and critical for us to succeed in the project.

1

Table Of Content

1.0 Introduction 6
1.1 Overview 6

1.1.1 About Knowit Sør 7
1.1.2 User group: Norske Kvinners Sanitetsforening 7

1.2 Purpose of project 8
1.2.1 Characteristics of the Project 8

2.0 Central decisions 8
2.1 Requirements from Knowit 9

2.1.1 Project management requirements 9
2.1.3 Technological requirements 9
2.1.4 Quality Requirements 10

2.2 Quality Management 10
2.2.1 Internal and external quality 10
2.2.2 Quality Assurance 11
2.2.3 Technological decisions 14
2.2.4 Design principles 15

2.3 Project Management Choices 16
2.3.1 Azure DevOps 16
2.3.2 Scrum 17
2.3.3 Risk Management 17
2.3.4 Backlog, Estimation & Priorities 17
2.3.5 Communication 19
2.3.6 Roles in the project 20

2.4 Other central decisions in the project 21
2.4.1 Development Role Distribution 21

3.0 Running the project 21
3.1 Planning and Analysis 22

3.1.1 Planning during Covid-19 22
3.1.2 Planning administrative tasks 22
3.1.3 Product Backlog 23

3.2 Project Management 24
3.2.1 Azure DevOps 24
3.2.2 Estimation of the backlog 24
3.2.3 Burndown Chart 26
3.2.4 Risk Management 26
3.2.5 Communication 27
3.2.6 Roles in the Project 28

3.3 Agile Methodology 28
3.3.1 Scrum Team 29
3.3.2 Sprint Planning 29
3.3.3 Sprint Backlog 29
3.3.4 Daily Standup 30
3.3.5 Sprint Review 31
3.3.6 Sprint Retrospective 32

3.4 Design 32

2

3.4.1 Wireframes 33
3.4.2 WCAG 33
3.4.3 Benyons Design Principles 34

3.5 Development Process 39
3.5.1 The Use of Technology 39
3.5.2 Code Review 41
3.5.3 Design Patterns 42
3.5.4 Version Control 44
3.5.5 Code Testing 44
3.5.6 CI/CD 45
3.5.7 Pair Programming 46

4.0 The product 47

5.0 Reflection 47
5.1 Project Management 47

5.1.1 Agile Methodology 47
5.1.2 Risk management 48
5.1.3 Estimation and Prioritization 48
5.1.4 Communication 49

5.2 Quality of End Product 50
5.3 Challenges 51

5.3.1 Covid-19 51
5.3.2 Roles and Role Distribution 52

5.4 Summarization 53

6.0 Statement from Client 54

7.0 Self evaluation 55

References 57
Appendix 1: Group contract 63
Appendix 2: Wireframes 66
Appendix 3: Risk matrix 69
Appendix 4: Sprint review 71
Appendix 5: Sprint retrospective 77
Appendix 6: Code standards 80
Appendix 7: Git Procedures 82
Appendix 8: Structuring of component interfaces. 84
Appendix 9: Tailwind config file and example 85
Appendix 10 - Azure DevOps 86
Appendix 11 - Test examples 89

3

Figure list
Figure 1: Application flow diagram .. 5

Figure 2: Existing technology .. 6

Figure 3: Git Flow .. 12

Figure 4: Example of Epic-Feature-User Story-Task ... 17

Figure 5: Discord window with different channels on the left, and content of the selected channel on the

right ... 19

Figure 6: User stories .. 22

Figure 7: Estimation of Lokalforening component .. 24

Figure 8: Burndown Chart ... 25

Figure 9: Risk Matrix .. 26

Figure 10: Sprint backlog ... 29

Figure 11: Sprint review form used for preparation (Mendez, 2015) ... 31

Figure 12: Sprint retrospective table from 01.03.2021 ... 31

Figure 13: Wireframe of login page ... 32

Figure 14: Example of visibility - existing version vs. our version ... 34

Figure 15: Example of familiarity ... 34

Figure 16: Example of “sticky” footer .. 35

Figure 17: Example of the use of constraints ... 36

Figure 18: TypeScript type inference and type declaration .. 38

Figure 19: A model of the whole application .. 41

Figure 20: Pipeline yaml in browser editor .. 44

4

1.0 Introduction

In the bachelor course IS-304, the assignment was to carry out an IT/IS-related project using

established methods and techniques, including planning, estimating, performing testing,

following up, and documenting the process. We were also supposed to define quality in the

project and implement measures that assure quality and control progress and quality

throughout the project (UiA, 2020). Our assignment was to modernize the code stack for an

already existing system for the voluntary organization: Norske Kvinners Sanitetskvinnene. To

carry out this project we were employed by an IT consultant company: Knowit Sør.

In this chapter, we will present the overview and purpose of our project. In the following

sections, we will introduce the system, the characteristics, requirements of our system, the

user group for the system, and our product owner: Knowit Sør. In the rest of the report, we

will differentiate between the terms system and project, whereof we define the word system

as: “the delivery of the product” and project as: “the delivery of the product plus the processes

surrounding project management.” The terms system and application will be used

interchangeably.

1.1 Overview

Knowit Sør assigned us a task regarding

rewriting the full stack codebase for an

already existing system for Norske Kvinners

Sanitetsforening. The existing system is an

internal application for registering and

updating information regarding local

associations within Norske Kvinners

Sanitetsforening, resulting in an annual report

generated in Excel. The application assumes

that the users have login information, and

there are different access levels based on

whether you are an administrator or a regular

member. In addition to the login page, the

application includes the views as following:

5

administrator panel, local association and member information, the board, real estate, activity,

courses and training, gifts and financial contributions, accounting figures, and report. In the

last view, all the registered information may be downloaded as a portable document format

(PDF). The flow of the application is presented in figure 1.

The existing system was written in these technologies: Angular with JavaScript (frontend),

Node.js (backend), and MongoDB (database). Our task was to replace these with React with

TypeScript (frontend), Java (backend), and PostgreSQL (database) while also retaining the

same functionality as in the existing application. To summarize: the task was to create a

replica of the already existing system, with the possibility of being creative, especially

regarding the design.

Figure 2: Existing system stack

1.1.1 About Knowit Sør

Knowit Sør is an IT consultant company in the consultant group Knowit AB. They provide

and implement solution-type services with tailored expertise in system development and

continuous integration- and delivery (CI/CD) to their customers (Knowit, 2020). Knowit Sør

takes significant steps in understanding the business processes and problem domains of their

customers to facilitate domain-specific solutions. Knowit is the product owner and central

stakeholder of this project. We were assigned an employee, Thomas Andreé Wang, from

Knowit that functioned as both our supervisor and product owner in our project.

1.1.2 User group: Norske Kvinners Sanitetsforening

The system's users are the members of “Norske Kvinners Sanitetsforening” (NKS). NKS is

the most prominent female association in Norway, promoting women’s rights and healthcare

6

with over 40.000 members spread across 600 local associations (Norske Kvinners

Sanitetsforening, n.d). Our user group has these characteristics: Female, primarily elderly

users (60+), and can be categorized as super users and regular users. Superusers are those

already familiar with the old system and use it regularly. Regular users are those who use the

application annually.

1.2 Purpose of the project

The goal for our project was to conduct an IS-relevant project that fulfilled the learning

objectives of IS-304, as well as contributing to learning, both for us as a team and

individually. From the stakeholder’s (Knowit) point of view, the goal was to change the

existing stack into their in-house technology stack. Another aspect was to give us a project

where we could apply our knowledge and experience from the past three years, which could

potentially surpass the quality of the existing system and be cost-efficient for both Knowit and

NKS.

Knowit also focused on facilitating the process for our team through version control, project

management, and documentation using Azure DevOps. This project also acts as a way for us

to acquire valuable experience in running an actual project, especially regarding the system

development process.

1.2.1 Characteristics of the Project

There are several characteristics of the project that made it rather unique. Firstly, the product

was to be a replica of the old system entailing that we need to support the same actions, store

the same data, and provide the same functionality. Secondly, we worked with an Agile

workflow using MoSCoW prioritization, but because of the replica nature of the product, we

found ourselves with more must-haves than usual as every feature had to be completed for the

product to be used. Third and finally, the project is heavily influenced by the users of the

product, who are already familiar with the current system and may be resistant to significant

changes.

7

2.0 Central decisions

In the following chapter, we will present the central decisions on methodology, quality,

technological decisions, project management, and other central decisions that have been made

throughout this project.

2.1 Requirements from Knowit

Knowit had several requirements that impacted our central decisions on methodology, project

management, technology, standards, quality, and quality assurance.

2.1.1 Project management requirements

For project management, Knowit required an agile methodology in conjunction with the

project management suite Azure DevOps. It was also the agile methodology Knowit

themselves was familiar with and preferred in their in-house system development.

Azure DevOps provides project management services that facilitate collaboration, building,

deploying, and covering the entirety of the development cycle (Comley et al., 2021). At first,

Knowit wanted us to test the features of Azure DevOps. Nevertheless, within a week of the

preliminary meeting in January, Knowit had already decided to start using it.

The agile methodology in software development bases its fundamentals on the agile manifesto

from 2001 and is centered around the idea of iterative development (AgileManifesto, n.d.,

Cprime, n,d). Although Knowit chose this methodology for us, we would have made the same

decision ourselves, as there are several benefits to working agile, contrary to non-agile

methodologies. For one, it allows for frequent adaptation and introspection into the

development process, which increases control, and facilitates that the right priorities are being

made. Secondly, it puts the customers in the development cycle, creating a loop based on

feedback to keep the development focused towards the customers’ goals. Third, agile

methodology is the most used methodology according to a survey conducted by Stack

Overflow (Stack Overflow, 2018), and according to PWC, agile projects are 28 percent more

successful (Jonnalagadda et al., 2017, p. 1).

2.1.3 Technological requirements

Knowit’s current in-house technological stack consists of Java with Spring, React with

TypeScript, along with a PostgreSQL database; subsequently, we were required to use the

8

same stack. Java coupled with Spring - which is used by large companies such as Netflix (T.

Wicksel, 2019) - makes for a powerful tool suited for both large- and small-scale applications.

React is a Component-Based JavaScript library for building user interfaces (React, n.d.) and is

one of, if not the most, popular UI libraries - tagged in one in every twenty Stack Overflow

posts (Stack Overflow, 2021). PostgreSQL is a powerful, open source object-relational

database system that uses and extends the SQL language combined with many features that

safely store and scale the most complicated data workloads (PostgreSQL, n.d.).

2.1.4 Quality Requirements

Regarding quality and assurance, Knowit wants a replica of the existing system and source

code that is easier to maintain from a system maintenance standpoint. Moreover, they require

that (1) the development process is good, (2) that the source code is thoroughly tested with at

least 70 percent of the codebase covered to assure its quality, (3) and that we establish a build

and deploy regime.

What is a good development process?

According to Feiler & Humphrey, development processes are contextually dependent on the

project, and therefore it is difficult to define what makes a development process “good”,

suggesting that each project must find the process that befits its needs (Feiler & Humphrey,

1993). This is in line with Benediktsson et al., who suggests that a good development process

is contingent on the context (Benediktsson et al., 2006). Contextually, our project has precise

requirements both regarding methodology and technical specifications. Thus, adhering to the

agile methodology and implementing its practices, including; control through dialogue and

planning with Knowit, confirming priorities, estimated time for delivery (ETD), and most

importantly, being able to adapt to changing needs and specifications should result in the

process being termed “good”.

2.2 Quality Management

This chapter presents central decisions on quality and quality assurance and aspects that we

consider impacting quality; Internal & External quality, version control, code standards,

testing, and communication.

2.2.1 Internal and external quality

Our project has two perspectives concerning quality: internal and external quality.

9

We define Internal quality as complying with Knowit´s requirements, including automation,

maintainability, and structure. With automation, we had to establish a build and deploy regime

with automated tests. Maintainability involves writing code that is easy to maintain and has

high test coverage, and structure entails a clean and organized source code repository.

We define External quality as meeting the requirements specified by Knowit’s client and

encompasses elements like correctness, completeness, and consistency. Correctness means

that the calculations and data handled by the system are correct; Completeness is that the

system adheres to the client’s tailored needs; Consistency annotates that the design is uniform

and consistent.

2.2.2 Quality Assurance

We have implemented several measures to assure both the internal and external quality we

stipulated throughout the project. Assuring internal and external quality has been verified

through frequent dialogue with our product owner and has been continuously reviewed

through Sprint retrospectives- and reviews. Moreover, measures have been taken to

proactively assert quality in regards to the development life-cycle by implementing code

standards, design patterns, reviews, testing, and version control.

Code standards

To ensure quality in the source code, we decided to create a coding standard for the group to

follow. The standard covered naming conventions for classes, components, and variables,

including spacing, code-indentation, and folder structure. In more detail, we chose to split the

frontend and backend into two different repositories - resulting in the source code being

uniform and comprehensible, and maintainable for the entire group. See Appendix 1 for the

formal code standards.

Design Patterns

Another aspect in regards to facilitating quality is the implementation of design patterns in the

source code. A design pattern provides a reusable solution for common design problems that

typically occur in designing software (Barnes & Kölling, 2017, p. 542). We have followed

industry standards for both front- and backend development. We have used the Singleton

pattern and the Composite pattern for the frontend, which couples nicely with the React

10

library, resulting in reusable components that enable loose coupling, high cohesion, and

localizing change.

For the backend, we have used a Domain-Driven Design (DDD) pattern combined with the

Repository pattern (Albano, 2020) interfaced by Representational State Transfer (REST) over

the HTTP protocol. Both are typical patterns that befit the structure of Spring Boot. The

pattern is divided into three layers; (1) the controller layer, which receives HTTP requests and

passes them to (2) the service layer responsible for the business logic of the application,

which in turn passes domain objects or requests to (3) the repository layer which persists or

retrieve data to the database.

Code Review

To further ensure quality in source code, we implemented a formal list to standardize

reviewing source code, ensuring that every team member knew how to make a pull request,

when to make a new branch, and how to merge and fix feedback from the reviewers of the

source code. It was important for us as individual programmers, as well as Knowit, that we

put effort into reviewing each other's source code. As a measure to this implication, we chose

to have two required reviewers of each pull request besides the author. These decisions

regarding code review were to ensure quality in the code, as this, in the end, would ensure

quality in the whole application and that bugs were being fixed continuously. Both the general

and specific procedures connected to the Git Flow are described in Appendix 2.

Version Control

For version control, we used the integrated view in Azure DevOps that incorporates version

control software through the use of Git. To facilitate control over the produced source code,

we decided to follow the Git Flow WorkFlow (Atlassian, n.d.). Git Flow expedites for version

control through strict structure of branches and merging of source code through pull requests.

Primarily by ensuring that the Main branch has only production-ready source code and using

Gits branching feature to maintain a stable and rollbackable source code. Each task in the

backlog should be a separate branch in git, and when the task is completed, the branch is then

rebased onto the current production-ready source code to keep a linear version history. Below

11

is an example of the linear history of our main branch.

Figure 3: Git Flow

Testing

To validate external quality, we created unit and integration tests; Unit tests to confirm that

every method works in isolation, and integration tests to certify that methods work alongside

their dependencies to provide the required correctness, completeness, and consistency.

We decided to focus on white-box and black-box testing in the backend and black-box testing

in the frontend through end-to-end testing. White-box testing entails testing the internal

structure of code, giving the tests direct access to private implementations. On the other hand,

black-box testing entails that we test code without having access to its private and internal

state, much like how a user would interact with a website (GeekForGeeks, 2020). In addition,

we used code coverage, which provides us with raw statistical data on which files are covered

by tests, providing overall control over the source code. Further tools used in testing will be

covered in chapter 2.2.3.

12

Pair programming

We applied pair programming to ensure that more than one developer knew the code, finding

bugs and for security issues. As Linus Law says: “Given enough eyeballs, all bugs are

shallow” (Wikipedia, 2021). Other benefits of using pair programming include (1) collective

code ownership, as every team member gets more familiar with the code base, (2) facilitates

for mentoring if there is a difference in competence level, and (3) better code quality because

the existing and potential bugs are detected at an earlier stage.

2.2.3 Technological decisions

Of our technological decisions, there are some tools we chose to use to increase our internal

quality and particularly associated with maintainability. Firstly, we have chosen to use Project

Lombok to reduce boilerplate code through annotations, creating and injecting setters, getters,

and overrides on compile-time (Project Lombok, n.d.).

Secondly, we chose to use Spring’s implementation of Jakarta Persistence (formerly Java

Persistence API, or JPA) to aid us with data access to our database, eliminating the need for us

to write SQL queries ourselves. Thus, removing the possibility of human error from our side,

effectively increasing the security, for example, removing the possibility of SQL injection.

Thirdly, we used Mockito, which is one of the most used stubbing tools for Java (Idan, 2016),

to granulate the testing of components dependent on external parts of the application - such as

methods dependent on the HTTP protocol, database connections, and service layers - which

expedite internal quality by isolating the dependent parts of the system. Another tool we

chose to use that is helpful for testing is the Zonky Embedded Database library. Zonky

Embedded Database is a library that allows embedding PostgreSQL into Java application

code with no external dependencies, allowing us to unit test with a "real" Postgres database

(Zonkyio, 2021). We also used Flyway to facilitate database migration and versioning,

allowing us to have a stable database with different versions of the main source code.

For our frontend development, we decided to use the CSS framework Tailwind to style our

components instead of using traditional CSS files. Because it made it easier for us to style our

React components, inserting class names directly into the markup. Another benefit of tailwind

is that it allows for customization through its config file, here we added our own CSS classes,

13

which then gets compiled to usable CSS classes on compile-time, instead of having to create

CSS files manually. See appendix 9 for tailwind config and example.

Lastly, the Product Owner challenged us to include some basic security in the application. To

solve this, we chose to use the Spring Security Framework for password hashing and user

authentication and Auth0 for Java Web Token generation and validation.

2.2.4 Design principles

Several decisions were made to ensure quality in the design. Some of them are implied by the

requirements from Knowit. Considering the application is a replica, and the user group is

already familiar with the old design. We have no means of affirming our design decisions

with NKS; we decided to follow the Web Content Accessibility Guidelines (WCAG),

Benyons design principles, and create wireframes. We also used the old system for reference

to increase the overall familiarity of the system for the end-user.

WCAG

WCAG strives to achieve accessibility digital compliance. All businesses, organizations, and

other entities who want their digital content accessible for all people should follow the

WCAG guidelines (WCAG, 2020). Our supervisor from Knowit recommended that we

should follow WCAG; nonetheless, all public websites and web content posted after January

1. 2012, must meet WCAG 2.0, which is law-enforced from January 1., 2021

(Kulturdepartementet, 2020).

Benyon’s Design Principles

To facilitate quality in the design process, we decided to follow the 12 familiar design

principles from Benyons book that cover visibility, consistency, familiarity, affordance,

navigation, control, feedback, constraints, flexibility, style, and conviviality (Benyon, 2014,

p.86). We chose to follow these principles because they are widely tested and recognized in

designing a good user experience.

Wireframes

Wireframes provide a visual understanding of a web page during the early stages of the

development process (Experienceux, n.d). We decided to create digital wireframes in the

14

initial phase of the process because we wanted to create an initial layout of the design and get

confirmation and feedback from Knowit before proceeding with the implementation.

2.3 Project Management Choices

Project management is a crucial part of succeeding in any project, and this aspect of system

development has been a continuous focus over the past three years. In this project, we have

held project management as a high priority. In the following sections, we will present our

central decisions concerning project management, which includes the decisions regarding the

use of Azure DevOps, Scrum, risk management, communication, and tools.

2.3.1 Azure DevOps

We have used Azure DevOps as our central project management tool. Albeit Azure DevOps

being a requirement from Knowit, it certainly would have been considered a highly relevant

alternative with the characteristics of our project in mind. Other similar alternatives are Jira,

BitBucket, or Trello, which hold some of the same features as Azure DevOps. The benefits of

using Azure DevOps for our project include these: (1) DevOps facilitates working with agile

methodologies such as Scrum, (2) it offers an end-to-end toolchain for developing and

deploying software, (3) it offers a wide range of tools covering the entire development

life-cycle with features such as boards, wikis, repos, and pipelines, and (4) it integrates with

our selected IDE IntelliJ, as well as Git and Docker (DevOpsGroups, n.d.; StackShare, n.d.).

For project management, we have used these main features of Azure DevOps: Overview,

Boards, Repos, and Pipelines. These features cover our Sprints, backlog, branches, pull

requests, and documentation. It is important to mention that we have decided only to include

the development part of the project in Azure DevOps in collaboration with our supervisor.

Project management choices, writing on the bachelor’s report, and other administrative tasks

were left out of Azure DevOps. The reason for excluding administrative tasks in the Azure

Board was that we considered them to oppose one of the main goals of the agile process: to

deliver working software at the end of every sprint. It was also challenging to estimate the

working hours of administrative tasks, as they were a continuous process throughout the

whole project.

15

2.3.2 Scrum

We have based our project management on Scrum, implementing the main elements of this

methodology in our project. The elements we used included: Scrum Team, Daily Scrum,

Product Backlog, Sprint Backlog, Sprint Planning, the Sprint, the Sprint Review, and the

Sprint retrospective. These processes resulted in working software at the end of each sprint.

We chose to use Scrum because the use of Azure DevOps facilitated an agile methodology, as

well as us being familiar and having a positive experience with the use of Scrum in earlier

projects.

We chose to set the duration of each sprint to two weeks, which led to us having a total of

eight sprints. Setting the sprint limitation to two weeks was due to us having experience with

three-week-sprints from an earlier project, and our impression was that we lacked a degree of

consistent dialogue with the product owner and other stakeholders in the project. In contrast,

we considered one-week sprints to be too short to provide valuable deliveries. We can also

interpret that a one-week sprint would oppose some of the agile principles about trusting the

team to get the job done and self-organize themselves (AgileManifesto, n.d.).

2.3.3 Risk Management

In project management, it is essential to assess risks that could impact the product’s success

(Lavarya & Malarvizhi, 2008). To identify, evaluate, control, and mitigate potential risks, we

chose to make a risk matrix (Appendix 3). We acquired an overview of risks, uncertainties,

and threats in our project in the risk matrix. The content of the matrix implies what the risk is

and what the consequence will be of each specific risk event. The matrix specified how we

planned to manage the risk through proactive measures. The main reason for including the

risk matrix was due to a strong recommendation from our supervisor at UiA, especially

considering the unpredictable times of Covid-19. Secondly, this gave us a sense of control of

which measures we had to implement in the project if Murphy’s law were to take effect.

2.3.4 Backlog, Estimation & Priorities

In Azure DevOps, we decided to use the entire Backlog hierarchy with Epics, Features, User

Stories, and Tasks. An epic represents a business initiative to be accomplished; A feature

typically represents a shippable component of software (Microsoft, 2021). In our case, there

was a single Epic, being the whole application for NKS. Every view found within the

16

application makes up for one Feature each. These features are then split up into as many User

Stories as are needed, which are subsequently split into Tasks. For every task, we made

estimations of a best- and worst-case on how many hours we assumed it would take us, as

well as an average of the two with a slight skew towards the worst-case estimation.

Figure 4: Example of Epic-Feature-User Story-Task

To modularize the user stories and differentiate between the front-end and back-end tasks, we

chose to make one user story based on the end-user requirements and one correlating user

story based on the system requirements. These user stories were in turn connected to the

overall feature/view. The reason for splitting the user stories into two was to make a clear

differentiation between the system and the end-user as these have different requirements. It

also made it easier for us to break down the tasks and thereby got a smaller scope for each

task, as well as it made it easier to define the acceptance criteria of the task.

We estimated our tasks because it gives us greater control over the project in general and

because we assume it to be a requirement due to Scrum's nature, as we need to know how

many tasks we can put into one Sprint. It is also noteworthy that time is the only resource

available; without time estimation, it would be difficult to plan or even prioritize the right

features. For the individual Sprints, we can estimate how many tasks we can expect to

complete. Estimating the backlog in its entirety can give us an overview of whether we will

complete the project on time or not and facilitate prioritization through dialogue with the

Product Owner.

17

In Azure DevOps, we also used the feature inside the Azure Board called “Capacity”. In the

capacity section, one can assign daily hours to each team member to conduct different

activities, including “development”, “design”, “documentation”, and “requirements”. As we

decided to mainly use Azure DevOps for development purposes, we only set the capacity of

the specific activities connected to the development process, namely “development” and

“design”. We set the capacity of each team member to a maximum of four hours per working

day. The capacity feature made it easier to structure and plan each day and helped us to set

limitations for ourselves not to get overworked or underworked.

As mentioned in the Characteristics of the Project, most of the user stories found within the

backlog are categorized as must-haves. In order to prioritize which user stories to work on, we

decided to start with the ones that had the fewest dependencies. We were also advised to work

in a “top-down” approach, where we create the frontend part of a view before creating the

backend infrastructure that the view requires to function - an advice we chose to follow.

2.3.5 Communication

During the project, we used several communication platforms to collaborate and maintain

contact with our supervisors. The platform Microsoft Teams was used to communicate with

our supervisor from Knowit, while the meetings with our supervisor from UiA occurred on

Zoom. In instances where both supervisors were present, we used Microsoft Teams.

We used Discord, Messenger, and Google Drive for communication. The three platforms

were used for various purposes, but were chosen based on our former experience of

collaborating online. During the project, the main platform we used for formal

communication within the team was Discord, primarily for online meetings, daily standup,

and resource sharing. Discord made it easy to create an overview of different topics, both in

regards to administrative tasks, but also directly relevant to development. Discord provides

the opportunity to create channels based on different topics or paste formatted and syntax

highlighted code straight in the chat. We used Messenger to plan the upcoming days,

meetings, and other informal text communication. Google Drive and Azure Wiki covered all

the administrative cooperation, including tables and relevant documents.

18

Figure 5: Discord window with different channels on the left and content of the selected channel on the right

2.3.6 Roles in the project

In the project’s planning process, we made a group contract where we distributed overall roles

to each team member. The roles included these: (1) integrator with responsibility for being a

social contact person, (2) technical advisor with responsibility for giving supervision and

being available regarding technical questions, (3) a secretary with focus on coordinating and

having control over the administrative tasks, and (4) the primary contact person that was

connected to our associative company Knowit. We chose these roles because some of us had

experience with using the PAEI model before (Producer, Administrator, Entrepreneur,

Integrator) and felt that these roles were well suited for project work (MindTools, n.d.). The

reason for giving each person a role was to ensure that we considered every aspect of the

project processes and ensure that every team member felt they were having an area of

responsibility in the project. See Appendix 8 for the group contract.

In our project, we decided not to have a formal group leader. The reason for us not to

designate any person the Scrum Master or leader role was with the intention of everyone

feeling equally responsible for the project. We also followed the agile principle that the best

architectures, requirements, and designs emerge from self-organizing teams (AgileManifesto,

n.d.). This statement provided us with the flexibility of not choosing a leader because we were

19

confident that the roles already assigned to each team member were adequate and that the

group democracy as a whole should pilot the project towards success.

2.4 Other central decisions in the project

In the following sections, we will present central decisions not covered by the earlier

subtopics in this chapter. We will present the decisions made in terms of role distribution in

the system development part, as well as how and why we distributed roles in terms of the

overall project.

2.4.1 Development Role Distribution

At the beginning of the project, our team focused primarily on facilitating a productive and

good process, especially emphasizing every team member to achieve an optimal learning

outcome. In this project, we wanted to distribute most of the development tasks in the

frontend, backend, databases, and documentation in a fair manner, so that every team member

could:

1. Secure progression and get control of the project by familiarizing with every aspect of the

system development. This decision was made to ensure quality and understanding of the

project.

2. Ensure that every team member gets to learn different techniques, tools, and languages

(e.g., Typescript, Java, PostgreSQL). This decision was made to fulfill the learning motivation

of the team.

3.0 Running the project

In this chapter, we will describe and present our approach to the project, including how we

conducted planning and analysis, project management, agile methodology, design, and the

development process.

3.1 Planning and Analysis

The project began in January 2021 with the first Sprint. This Sprint became more similar to a

pre-sprint, focusing on getting a clear description of the characteristics of the project and

understanding the requirements. In this Sprint, we also focused on defining the project scope

20

in collaboration with our Product Owner. This Sprint also included the distribution of roles,

installing necessary tools and software, and planning other administrative tasks.

3.1.1 Planning during Covid-19

During the months we worked on this project, we needed to consider the global pandemic

Covid-19. The shifting restrictions, the fear of getting infected, and ending up in quarantine or

isolation became major factors in the planning of the project, as well as running the project.

The first Sprint was mainly conducted through Discord as there was lockdown in Kristiansand

with a strong recommendation of not visiting the University of Agder and a limitation of only

two guests in our own home. The initial phase of a project, especially in regards to planning,

was important for us to have face-to-face. The lack of meeting face-to-face presented a

challenge for us as a team, as we all wanted to get adequate control over the project and the

product. To cope with this, we had several and regular meetings using digital platforms with

each other and our supervisor at both UiA and Knowit. Besides the project’s planning phase,

the pandemic has been a continuous challenge over the whole semester because of the

ever-changing restrictions.

3.1.2 Planning administrative tasks

In the first Sprint, we were eager to get started with the development part of the project.

However, we quickly realized that there was a bundle of administrative tasks that needed to

be completed and planned before we could do any programming or development. The

realization became apparent once Knowit held a kick-off at their offices in late January

(Sprint 2). In this meeting, they provided us with helpful advice on how we should

administrate and plan for tasks that were outside the development itself. They also

recommended that we use about 60 percent of our time on development and the remaining 40

percent on administrative tasks. These factors made us discard most of the planning work we

had done up until that point, and we decided to have a meeting where we planned the project

in more detail and re-estimated and re-located both the development tasks and the

administrative tasks. Subsequently, the re-planning increased the level of control and made

the development process easier, driving the project forward.

3.1.3 Product Backlog

A Product Backlog is an ordered list of the features and other activities a team may deliver to

achieve a specific outcome (AgileAlliance, n.d). It was an appointed goal from both Knowit

21

and ourselves to set the Product Backlog as soon as possible in the project process. To

establish the Product Backlog, we used different techniques, such as user stories and

wireframes, and knowledge from Knowit to define the product backlog at an early stage.

In cooperation with Knowit, we decided to make one feature for each view in the application,

with underlying user stories. Furthermore, we decided to make one user story for the end-user

and one user story for the system. To ensure quality, we added acceptance criteria for each

story, as well as estimating how much time each task in the user story would take based on the

preliminary estimation. An example of two user stories (end-user and system) is presented in

figure 6.

Figure 6: User stories

We used the MoSCoW (Must have, Should Have, Could Have, Won’t have) technique to

prioritize the user stories. Each initial feature (view) was a must have, but we prioritized the

features with the least external dependencies first. We added some additional user stories to

the backlog throughout the project, such as fixing minor bugs and making small design

adjustments. Some of these stories have been prioritized to be should have or could have.

3.2 Project Management

In this section, we will present how we organized the project management, including how we

used Azure DevOps, how we conducted the risk management, the backlog and estimation, the

burndown chart, communication, and how we distributed the roles in the project.

22

3.2.1 Azure DevOps

We used Azure DevOps as our project management tool. We made use of the Azure

Summary, Boards, Repo, and Pipeline overall features. In the Azure Summary, we used the

Wiki to note advice, links, and other information regarding the project. We used the Azure

Board to get an overview of the work items, the product backlog, and the sprint board. Azure

boards helped us have control and progression in the project, as we could have an overview of

each team member's capacity, which user stories with belonging tasks that were closed, and

the estimation of each task. This feature also provided us with a burndown chart to predict our

team's likelihood of completing the tasks within the allotted time frame. We could find both

repositories and the associated files and the new, active, and closed pull requests in the Azure

Repos. All the branches that had been used were also listed. We also used the Azure Pipeline

to ensure we could build, test, and deploy software faster and easier. See appendix 10 for an

overview of Azure.

3.2.2 Estimation of the backlog

In the planning process, we made an initial backlog where we included each view of the

application as a feature, with coupled user stories (split in two between end-user and system),

and made associative tasks to them. When the tasks were completed, the user story was

automatically put in the review tab in Azure DevOps and eventually closed. Since every

initial user story was a must-have, the prioritization in our project was based on completing

the views through the flow of the already existing system and how many external

dependencies the view had, completing login first, and exporting to Excel last. We knew that

it was important for Knowit that we completed one view 100 percent instead of 80 percent

each, which was, therefore, an implicit prioritization. Throughout the semester, we found

necessary tasks and user stories that we needed to add to the backlog, and these were

prioritized based on dialogue with our supervisor and Product Owner Thomas, as well as

through a discussion in the Development Team.

Estimation was a continuous main priority during the planning and running of the project. The

subject IS-304 gave us a framework of how many weekly hours we should use to work with

the project. IS-304 is a 20 credits subject, and it is therefore estimated approximately 25 hours

a week per student, with a total of 810 hours during the whole semester per student. To ensure

23

that everyone in the team fulfilled this requirement, we were responsible for logging our

daily/weekly/monthly hours.

In terms of estimating how many hours we would use on each user story, we sat down at the

beginning of the semester to estimate each story based on experiences from earlier projects.

After our kick-off with Knowit, they provided us with an Excel sheet they used in estimating

tasks in their own projects, which was a valuable addition to structure the estimation. In this

sheet, there were three columns that were split into worst-case and best-case scenarios for

each user story and the associated task, where a formula calculated an estimation based on

these scenarios. This estimation sheet also helped us divide the tasks, which resulted in

completing a user story. In figure 7, we have provided a section of this estimation sheet.

Figure 7: Estimation of Lokalforening component

When running the project, we experienced that we worked faster with the new views and that

we could reuse the process and significant parts of the code in the later views. Partly because

we were more experienced, but also because we had made central decisions regarding how we

should structure the code, made universal components to use in views that required some of

the same functionality as the first views, and that we had more clear roles in the project.

3.2.3 Burndown Chart

The burndown chart is a graphical representation of work left to do versus time and is often

used in the agile work process to keep the team running on schedule and comparing the

planned work against the team progression as well as monitoring the project scope creep

(Visual Paradigm, n.d.). The burndown chart was a feature in Azure DevOps with different

analytics, and contributed to us having an overview over the balance of remaining time and

24

tasks completed. This was very helpful for us to consider if we had too many tasks and user

stories in each Sprint, if we were on schedule in terms of finishing the overall project, as well

as the delivery of each sprint, helping us improve in the Scrum process. During the project,

we improved in terms of analyzing and considering how many tasks were adequate to

complete, and it has been a valuable tool throughout the semester to have control and ensure

progression in the project.

Figure 8: Burndown Chart

3.2.4 Risk Management

To cope with the potential risks in the project, we made a risk matrix. We used the risk matrix

when some of the risks came into force, such as the pandemic forcing us to work from home.

When the pandemic intensified, we knew that we had to be more structured in terms of

clarifying planned appointments of when we should meet and how we could work to reduce

the damage as this could potentially cause significant harm to our project. The fact that we

had this overview made it possible for every team member to know which measures we

should implement if unfortunate events were to happen. The overview has, in turn, helped us

to maintain progression and control in the project. In figure 9, we have provided an extract of

our risk matrix. The whole Risk Matrix is presented in appendix 3.

25

Risiko
1 til 5

Konsekvens
1 til 5

Sannsynlighet
Risiko

Tiltak for at dette ikke
skal skje

Tiltak for å
redusere skade

Gruppemedlemmer

kan bli mindre

effektive av å jobbe

hjemmefra

4 3 12 Sette opp møter med

faste klokkeslett. Jobbe

i par for å motivere

hverandre til enhver tid.

Noen må steppe

opp å hjelpe og

motivere

hverandre.

Sent svar, eller lite

oppfølging fra

oppdragsgiver

4 2 8 Hyppig kontakt, avtale

møter på forhånd.

Ta kontakt med

veileder fra UiA,

eller ta egne valg.

Manglende

kompetanse i

prosjektet

3 2 6 Gruppen setter av tid til

å lese seg opp på nytt

stoff.

Lære av

hverandres

styrker.

Figure 9: Risk Matrix

3.2.5 Communication

Communication has been a contributing factor for progress in the project, and to maintain

quality in our work methods. Based on our previous semester, we were prepared for the

collaboration to become more challenging than normal because of the pandemic. However, at

the beginning of the semester, we planned early with our supervisor from UiA to meet up

every second Wednesday if needed (on Zoom), and every second Monday with our supervisor

from Knowit (on Teams). Communication has increased the quality of the project

management, helping us remain in control. Based on our former years as a group, we have

experienced that communication, in general, can be improved. Therefore our focus was to

start planning early and lay a well-structured plan for the upcoming weeks and months.

At first, we planned that all members were to attend meetings physically, face-to-face on

Monday, Tuesday, and Wednesday with flexi-time during 10:00-14:00. This seemed to work

great until COVID-19 increased in Agder, and the University closed for a while. The

pandemic did not have a big impact on our ways to communicate with each other, as we could

use online methods to communicate. Unfortunately, the development process did slow down

and became more time-consuming than before. The threshold for asking for help when we did

not sit with each other physically became higher than before. It was not always optimal to use

digital communication platforms because of the quality of screen sharing, microphone issues,

26

or other technical difficulties, affecting processes like pair programming, Daily Standup, and

general motivation. However, later in the semester, when the University reopened, we were

determined to meet up physically every day, perform Daily Standup, and we experienced that

we became more productive when we met physically due to better communication. The

physical meetings also improved the group dynamics and made it easier for us to learn from

each other with pair programming.

3.2.6 Roles in the Project

We divided overall roles in the project in our group contract, so that everyone should feel a

responsibility for the project. These roles got amorphous throughout the project as everyone

had shifting motivations at different points in the project. This led us to fill in the blanks for

the other members through some trying pandemic times, especially with the role of the

integrator and secretary.

In terms of the development process, we had rather loosely defined roles, as we all wanted to

learn in every aspect of the development. Throughout the project, the roles became more

defined in terms of who had the primary responsibility for the design, the frontend

development, and the backend development. The role distribution was not planned, but due to

us having to spend considerable parts of the semester at home, these roles were somehow

unconsciously distributed based on interests and earlier experiences and knowledge regarding

programming and developing.

3.3 Agile Methodology

In this section, we will present how we used the agile methodology - and more specifically

Scrum - to run our project. We will introduce and explain how we used the Scrum Team, the

Sprint Planning, the Sprint Backlog, the Daily Standup, the Sprint Review, and the Sprint

Retrospective in the following sections.

3.3.1 Scrum Team

A Scrum Team is a collection of individuals working together to deliver the required product

increments (Visual Paradigm, n.d.). Our Scrum Team consisted of the Development Team

(four members) and the Product Owner. Since we decided not to have a Scrum Master, it was

everyone’s equal responsibility to make sure the Scrum process was followed, to arrange

27

Sprint Planning meetings, Sprint Retrospective meetings, and Sprint Review meetings, as well

as being responsible for the burndown chart and to make decisions in regards of prioritizing

the Sprint Backlog.

3.3.2 Sprint Planning

Sprint Planning is the first event of the Scrum framework and initiates the whole Sprint. The

Sprint Planning is conducted by the whole team and presents all work that is to be performed

for the specific Sprint. The planning is about discussing the most important Product Backlog

items and mapping them to the product goal. In addition, the team is able to invite other

people to provide advice (Scrum, n.d).

Our Scrum Team implemented the Sprint Planning in a mix-up with Sprint Review and Sprint

Retrospective, because this was the time we had access to discuss together with the Product

Owner. During these meetings, we were able to ask questions and address important topics of

a Sprint Planning event: (1) What do you think of the backlog?, (2) What do you think of the

priorities, is it accurate? (3) What else should we keep in consideration?. These questions led

to open conversations and provided us with guidance for the next Sprint.

3.3.3 Sprint Backlog

The Sprint Backlog is a plan that is developed by and for developers. The Sprint Backlog

contains all tasks that are supposed to be accomplished during the sprint to reach the Sprint

Goal (Scrum, n.d).

During the project, we created the Sprint Backlog with Azure DevOps tools. The Sprint

Backlog has been an essential feature in terms of getting an overview, division of tasks, and

time management. The task board was determined from the Sprint Goal, and the tasks were

created based on that. An example of a Sprint Goal: “Complete all views one by one”, based

on the specific Sprint Goal, the task board was filled with all started views. The Sprint

Backlog increased control and progress in the project. The Sprints were laid out so that each

team member assigned themself to a task; as shown in the figure of the Product Backlog, each

task in “active” is named, and the estimated hours for each specific task are shown. In

addition, each task card can be fulfilled with all hours completed and all hours remaining, and

one can see the original estimate. All team members could keep track of the work items, and

28

it was visible at all times who was working on what, and when their tasks were in review, or

when the task was completed.

Figure 10: Sprint backlog

3.3.4 Daily Standup

The Scrum framework has named the Daily Standup “Daily Scrum”, but a “Daily Standup” is

a time-boxed meeting where the team carries out a status check; the meeting is supposed to be

held every day and at a set time (Agility, n.d). In our team, the Daily Standup was performed

in a standard routine where each team members must stand up and answer the following

questions:

● What have I accomplished since the last meeting?

● What do I plan to do for the next meeting?

● What impediments are in my way?

At the beginning of the project, we held daily standups two to three times a week until we

understood the importance of performing them. Subsequently, we increased the amount of

meetings to be held every day at a set time. The meetings lasted from five to ten minutes, and

it was important for the team to focus on only answering the three questions briefly and to the

point. It has been even more important during the pandemic to carry out the Daily Standup

because the team has often been forced to work with the project from their home office.

Therefore, the principle of Daily Standup could be considered an effort to increase the quality

of the product because it facilitates communication and focus in the team.

3.3.5 Sprint Review

The Sprint Review meeting is one of the last events in the Scrum framework and includes

these elements: (1) the attendance of the Scrum Team, the key stakeholders, and the Product

Owner, (2) explanations on what Product Backlog items that have been completed, (3)

29

discussion of what went well during the sprint, problems during the sprints and how the

problems were solved, as well as (4) a demonstration of the work that has been done (Scrum,

n.d.).

Our team had Sprint Review meetings every other Monday; it was set for 1-2 hours per

meeting. The Development Team and Product Owner attended all Sprint Reviews. For two of

the Reviews, our supervisor from UiA was present as well. To get control over each meeting,

our team created a table for each Sprint that contained “Sprint status”, “Things to Demo”,

“Quick Updates”, and “What's next”. The Sprint Review meetings always ended with a

completed Backlog for the next Sprint, and led to a fluid dialogue with significant inputs from

our supervisors.

Sprint
Status

Where are we in terms of project completion? Over halfway (sprint) , Stories completed: 7 , Views that

are left: (aktiviteter, kos, regnskapstall og rapport)

How many sprints left ? Vi er nå i sprint 7, 2 Sprints left

Is the project on track? 71% completed user-stories (56% -> 71%), Estimat: Eiendom og bidrag hadde 98

timer, men vi brukte 33 timer. (40), Styret brukte vi 19 timer (bedre enn best-case som var 24) og hadde

estimert 64.

Project completion % : Project on budget? Project on track? Yes (but not on completing everything)

Challenges: Rapporten (fordelt timer på rapport og programmering), IS-305 innleveringer, Deadline (Både

prosjekt og rapporten er deadline på likt)

Sprint goal: Fullføre den påbegynte viewsene, før vi startet på

Things
to
Demo

Test coverage gått opp (74%), Fjernet unødvendige filer fra test coverage, Slettet ubrukte metoder, All

backend for EiendomVirksomhet.

Login:(usikker) Login nå med foreningsnummer istedenfor lagret ID, AdminPanel:Radio buttons,

Lokalforening: Fjernet “antall”, Kun Admin tilgang til spesifikke felter, Henter ut data fra database og

sende data, “Lagre” pusher videre til Styret, Styret: Footer - standardisert, Begynt overgang til ny Table

component, Styling styret, Sende og motta data., Eiendom og V.: Table implementert med table

component, Gaver og bidrag: Sende og motta data, full overgang til ny Table component for gjenbruk,

Quick
Update

Vise backlog: Her skulle jeg visst hva som ikke ble ferdig, men etter en fin crunch på fredag til og med

søndag ble alle stories og tasks for sprint 6 ferdig.

What’s
next

Tasks: Feilhåndtering, Aktiviteter, Kos, Backend / Frontend aktiviteter , Kurs opplæring,

samarbeidsprosjekt og Regnskap (Vise backlog)

Sprint goal: Bli ferdig med alle views som er oppsatt. Hvis vi får tid tar vi med rapport viewet også.

Hovedprioritering ila. sprinten har vi tenkt er feilhåndtering og tilbakemelding på allerede eksisterende

views.

30

Questions for Product Owner: What do you think about what's next? What about the priority? Is it accurate

? What else should we keep in consideration?

Figure 11: Sprint review form used for preparation (Mendez, 2015).

3.3.6 Sprint Retrospective

Sprint Retrospective is the last event of a Sprint and includes a plan on how to increase

quality and effectiveness. Performing a Sprint Retrospective helps conclude the sprint in the

best possible way (Scrum, n.d). After every Sprint, our team performed a Sprint Retrospective

to identify the best possible ways to improve our effectiveness and the development process.

In the Sprint Retrospect, we decided to follow the typical retrospect model that involves the

following questions: (1) What worked well? (2) What went wrong? (3) What could be

improved? After discussing these questions, our team considered new ways to increase

product quality by improving the work process. To accomplish this, we needed to implement

the improvements for the next Sprint.

Hva gikk bra ? - Lærte masse nytt, godt samarbeid, gode arbeidsrutiner, godt læringsmiljø,
god oversikt, høyere kvalitet på arbeidet, oppgaver blir ferdige

Hva gikk dårlig ? - Sprint Review, Lav motivasjon midt i sprinten, for store oppgaver, at
sprinten blir avsluttet før retrospekt

Hva kan forbedres? - Opprette en mal til sprint review(forberede seg bedre til sprint review), be
om hjelp tidligere, rapporten, huske å skrive timer, akseptansekriterier for
brukerhistorier.

Figure 12: Sprint retrospective table from 01.03.2021

3.4 Design

The only requirement from Knowit concerning the design was to create a replica, but we were

free to make changes in the design. We were of the opinion that the existing design of

Sanitetskvinnene’s web page was outdated to some degree, and therefore we wanted to update

the design and add a modern touch to it, through the use of WCAG, Benyon’s principles, and

wireframes. Although we were able to make adjustments, there were still limited

opportunities to make changes to the design. Based on the fact that the user group is an older

target group, but also because they already are familiar with the previous design and most

likely prefers it that way.

31

3.4.1 Wireframes

We made digital wireframes in the project’s initial planning, and these were based on the user

stories. The making of the wireframes contributed to us having a baseline in how each view

should be designed. Creating wireframes was helpful for us as everyone got a common

understanding of the design, and therefore we could argue that this increased the quality of the

end-product and saved time at a later stage of the project.

Figure 13: Wireframe of the login page

3.4.2 WCAG

WCAG guidelines have contributed to increasing the quality of the design and making

important design decisions. It has strengthened the quality of our product because it was a

specific choice that is already tested, and the choices that we made all have a rationale behind

them.

The principles from WCAG cover all standard design criteria, but not all principles were

suitable for our design. Despite that, we did focus on universal design and worked on the

principles that suited our design. Primarily, our focus was to work with the principles that

could contribute to a better user experience for our user group. For example: Adding space

between elements and text, add bigger font size, add headings, clearly show error messages,

being responsive.

3.4.3 Benyons Design Principles

Following the design principles during the project was considered as an effort to increase

quality in our design during the design process. The 12 principles are visibility, consistency,

32

familiarity, affordance, navigation, control, feedback, recovery, constraints, flexibility, style,

and conviviality. The principles are categorized into three categories, learnability,

effectiveness, and accommodation (Benyon, 2014, p.86-87).

The first principle is visibility, where the main focus is to ensure that things are visible; people

need to see what the system is doing and the functions that are available (Benyon, 2014,

p.86). Therefore we have consciously made the buttons bigger, and as before, we have clearly

written their function inside of them. One example is on the login page that contains one

button that should only perform one task, “logg inn”. The button is placed right under the

input fields, where it is visible to the user.

Figure 14: Example of visibility - existing version vs. our version

Secondly comes consistency. The principle focuses on being consistent in the use of design

features and working with similar systems and standard ways of working. For example, be

consistent in the use of colors, names, and layout (Benyon, 2014, p.86-87). Working around

this principle, we kept focusing on creating the same layout as it was before to avoid

33

confusing the user. The design was already consistent in a way that all views kept the same

layout, colors, and forms.

Familiarity is the third principle and focuses on using common symbols and language

included (Benyon, 2014, p.86). Familiarity has been an important principle for us to follow as

we were designing a replica of the old design. Our primary focus was to keep our user group

familiar with the web page, such as using simple language to explain new activities. For

example, in some of the views, we have an activity that says “legg til rad”. This is shown with

two icons: a plus for adding and a minus for removing a row. In addition, we also explained

the button with “Legg til” and “Fjern” to make sure that the user knows what the symbol’s

activity is.

Figure 15: Example of familiarity existing vs. our version

Affordance is the principle that focuses on designing all elements, so it is clear what the

element is. For example, when it comes to buttons, you have to design them to look like push

buttons, to make people actually want to press them (Benyon, 2014, p.87). As we were to

34

keep the old design, we kept the shadow and hover effect on the buttons. This gave a clear

sign of all the buttons and made them stand out from other elements on the page.

The fifth principle is navigation and is all about enabling the user to navigate through the

system with directional signs, maps, and information signs (Benyons, 2014, p.87). The web

page contained a navbar that made it easy to navigate forward and backward. We kept this as

it was, since all points were presented clearly with the name of the next page. In addition, the

webpage contained two buttons at the bottom of the site, one for navigating to the next view

and one for navigating to the previous view. Through dialogue with our Product Owner, we

were recommended to move the buttons into a footer that follows the webpage when scrolling

- making it easier for the user to navigate.

Figure 16: Example of “sticky” footer

Control is the sixth principle; it must be visible who is in control and allow the user to take

control (Benyons, 2014, p.87). The navigation bar is to help the user move around the web

page but also to make them take control of their actions.

Feedback is principle seven and focuses on rapid feedback information from the system, so

the user knows what effect their actions have. By applying constant feedback at the website

will make the user feel in control (Benyon, 2014, p.87). The user will experience feedback in

various forms throughout the website. For example, with the “Lagre og gå videre” button

present that the adjustments that have been done are saved and the user can move on to the

next page. Another example is the “Logg inn” button turning gray while the user is being

authenticated.

The next principle is recovery, the principle that covers the importance of recovery from

mistakes and errors. The user is supposed to be able to recover from their actions quickly and

35

effectively (Benyon, 2014, p.87). During the design process, we decided that feedback

messages, in general, should be visible to the user; therefore, we decided to use a bright and

visible color, “red”. We chose that color because it is an important message for the user. This

way, the user is able to recover from their actions. Based on the background color we chose,

which is light grey/blue, the recovery message appears visible since it is red.

Constraints are important to prevent the user from making errors or do inappropriate things

(Benyon, 2014, p.87). The web page was already updated with constraints, and we kept it as it

was because it was an important factor to prevent the user from making mistakes or doing

inappropriate actions. The constraints on the site are that the user can only do changes that are

meant for them. The input fields meant for admin are only available for the admin; if not, the

input fields are disabled, so the user cannot write or click on them.

Figure 17: Example of the use of constraints

Flexibility is under the third category that should present the design “in a way that suits them”

(Benyon, 2014, p.87). Flexibility is for people with different levels of experience and interest

in the system. We developed flexibility as a small part of our design where the user is able to

‘Add a new row’ in a way that suits them. Experienced users can tabulate, and inexperienced

users can use the mouse.

Style is principle eleven. The principle covers the main factor of the design's look; “It should

be stylish and attractive” (Benyon, 2014, p.87). After guidance from the ten former principles

mentioned, styling an attractive and stylish site became a lot easier. Our changes to styling

include, but are not limited to: adjustments to make the design modern and attractive; adding

a new background color that was inspired from Sanitetskvinnenes main page; giving the

buttons a much more modern touch with rounded corners (this was also inspired from their

home page); we added icons that look like plus and minus were ‘add new row’ was; we

36

created a new look for the tables; lastly, we added a bigger font size and spacing between

elements.

Conviviality covers that the interactive systems, in general, should be pleasant, polite,, and

friendly. The system should not contain aggressive messages or abrupt interruptions (Benyon,

2014, p.87). Due to the last principle, we were focused on creating pleasant and polite

feedback in the system. The importance of conviviality was highly prioritized when making

choices regarding the design and how we have worded instructions and feedback messages.

We considered it important that the user group could still understand and use it independent of

the changes that were made.

The design principles have been a vital guidance throughout the process of making good

design decisions.

3.5 Development Process

In the following sections, we will present the running of the project regarding the use of

technology, code review and code standard, the version control, the testing of the code, the

CI/CD, and the use of pair programming to achieve a good development process.

3.5.1 The Use of Technology

All the technologies used have to some extent, impacted our development process. For

example, being required to use Azure DevOps as a project management tool will impact parts

of the development process, as all aspects in development are impacted by the sort of

administrative tools used. However, here we wish to explicitly present how the different

technological frameworks have impacted the development process in regards to facilitating

internal quality in the form of structure and maintainability. We were already somewhat

familiar with the Spring ecosystem and backend development in general; however, neither of

us had much experience with the React framework, and Typescript was entirely new to us.

Typescript

To facilitate a healthy development process and later code efficiency, the group took an online

course and read the Typescript handbook from the official documentation to understand the

fundamentals of Typescript and how it impacts the structuring of code in React.

37

One of the primary benefits of Typescript is that it allows for optional strong static typing,

which means that when a variable is declared in Typescript, it will only allow certain values

to be assigned to it, and its type does not change (altexsoft, 2020). Compared to Javascript,

which only interprets typing during runtime, Typescript enables errors and bugs to be caught

before compile-time and can syntax highlight type errors in the code editor. Although

Typescript requires more boilerplate code than Javascript to declare types for functions,

objects, and classes, it is also efficient at type inference by dynamically inferring the type.

Type inference has provided us with increased control making the code easier to maintain.

Below is an example of how typescript infers a type and how to statically declare a type.

Figure 18: TypeScript type inference and type declaration

Continuing, we have used Typescript to create custom properties through interfaces, creating

a boilerplate for what our components expect as property arguments for structuring our React

components, making it easier to understand what types of arguments our components require.

An example of an interface can be found in Appendix 3. The optional typing has been an

incredibly helpful feature throughout the development process, as some types can be rather

ambiguous in React's type system; explicitly allowing a type to have any type has helped us

understand what the required type is by looking at the inferred type in the editor.

React

The frontend was built using the javascript library React, which makes it easy to build

component-based views for our application (Facebook Inc, n.d.). We used the popular

create-react-app command-line tool to set up our frontend. Create-react-app includes all

dependencies and setup needed, resulting in a ready-to-code skeleton (Facebook Inc, n.d.).

We used the composite pattern for our components, enabling us to reuse our components in

different views of the application. For example, our input, buttons, and table components are

generic, meaning they can be reused throughout the application, facilitating loose coupling

38

and high cohesion. Being able to create our own custom components complete with style and

logic has made refactoring the different views that are dependent on them more

straightforward to change, by allowing us to localize the change to the different custom

components and tailor their implementation in their respective views. Midway through the

development process, we had some difficulties with the GaverBidrag component’s table,

making the calculations, and correctly removing and adding rows to the state. Through some

research and refactoring, we extracted the logic from the GaverBidrag component and made a

separate generic Table component that could fit all our tables’ needs, reducing

code-duplication, as two other views need the exact same table and functionality. The

refactored component reduced our codebase by a significant amount.

Spring/Java

The Spring Framework has been a very helpful tool in our development process. With its

implementation of Dependency Injection/Inversion of Control in its core systems (Spring,

n.d.), Spring facilitates loose coupling through beans and autowired annotations. A bean is an

object that is instantiated, assembled, and otherwise managed by a Spring IoC container

(Spring, n.d.). We all have experience with creating a web application using Java from an

earlier project, but using Spring simplified multiple points of the process like using

controllers, services, and JPA repositories. The default maven integration also gives us easy

access to additional tools, and the use of Spring Security enables username and password

authentication through a single method override.

Tailwind CSS

At the beginning of the project, we studied several different frameworks regarding CSS, from

Material UI to Bootstrap to pure CSS. Initially, we chose to use Material UI, but we got a

recommendation from a frontend developer to investigate Tailwind in more detail. After some

research and experimentation, we chose to use this Tailwind CSS. The benefits of using

Tailwind include these: (1) it increased the speed of the styling process because Tailwind

helps you style the HTML elements directly, (2) it was possible for us to customize and make

our own components, (3) we did not have to import the CSS files in our classes and files, and

(4) it was convenient for us based on our former knowledge within system development, as

Tailwind is class-oriented and provides built-in classes, which we are familiar with

(Gebrewold, 2021). Overall we as a team have a positive experience with the use of Tailwind.

39

3.5.2 Code Review

We used the team’s standards for code and code review throughout the whole project. We

used a fair amount of time and effort at the beginning of the project to agree on some common

guidelines regarding code standards and the procedures in approving pull requests, the

structure of the files and repositories (Appendix 2). The code was reviewed in Azure DevOps

when one of the team members sent a pull request. At least two developers should review the

code besides the author itself. If any team member had suggestions or discovered bugs or

potential adjustments, we commented on that specific line of code (in Azure DevOps). The

author would then make the adjustments to the code and would afterward amend the fixed

code. Finally, the pull request was approved and eventually merged into main.

At the beginning of the project, we went through the review together physically by reading

through the new and changed files in the PR, which facilitated unity during the code review

process. These procedures ensured that every team member knew how to review the code,

structure a file within the IDE, and other measurements regarding the code. As a result, we

would argue that this has increased the quality of our source code, codebase, and the product

itself. The code review and code standards are presented in Appendix 1 and 2.

3.5.3 Design Patterns

When designing the codebase, we have followed Domain Driven Design (DDD), which

entails the creation and categorizing of classes after what “objects” originate in the domain

(Fowler, 2020). We used the old NKS application to find the specific domain objects. For

example, every report is tied to a local Forening (en. Organization) - and so the very first class

in our codebase was the Forening class, with an associated Forening table in the database.

Iterating on this, we created Styret, Eiendom, Virksomhet, and other classes until the

application was finished.

Overall, one can argue that the application is built around the model-view-controller pattern

(MVC). In MVC, the Model usually reflects real-world things, the View is the code that

directly interacts with the user, and the Controller receives user input from the View and

decides how to manipulate the Models with that input (Codecademy, n.d.).

40

In our codebase, the entire React frontend is our View, the backend’s Controller and Service

classes make up the Controller, and our domain objects fetched from the database through the

Repository classes are the Models. Our frontend displays forms and pages to the user,

registers the input, and communicates with the backend using Data Transfer Objects (DTOs)

using Representational State Transfer (REST). The Java/Spring backend receives the DTOs

on specific endpoints registered with specific Controller objects. Figure 19 shows the

application flow.

Figure 19: A model of the whole application

Following DDD and the Model and Controller part of MVC simplifies the process of creating

new functionality in the backend and contributes to a higher internal quality by standardizing

the coding process while also facilitating a higher degree of cohesion. First, we choose an

object from the NKS domain, i.e., Eiendom. Then we create the Model/domain object in the

backend with a corresponding database table before finally creating the Controller layer with

controller and service classes. One could argue that we could achieve higher cohesion - as the

service classes are responsible for too much - by creating classes like a ServiceSaver and

ServiceUpdater. However, we figured this would decrease Readability as it could cause clutter

in the project structure by creating classes with single methods, thus reducing the overall

internal quality. We would rather have each service class responsible for its domain object.

We have also strived to achieve loose coupling in our code. For example, every service class

depends on one or more repository classes for data fetching and object mapping. Our

repository classes are created from interfaces and created at runtime with JPA, but one could

implement that interface however one wants - i.e., with another library - and replace the JPA

implementation with very few changes. The same thing can be said for our service classes in

41

general. Every controller is dependent on a service class; for example, EiendomController

needs an EiendomService class. However, it only needs the service class to provide specific

methods, like getEiendommer and save, so if needed, one could extend the EiendomService

class and override its methods and register this new service class as the primary service class

for Spring to use. We could have reached further loose coupling by changing all of our

concrete implementations with interfaces and properly utilized Spring’s dependency injection

system, but we are overall happy with the degree of coupling and cohesion in our application.

3.5.4 Version Control

We used the Gitflow workflow in our version control. We decided to use Gitflow early in the

project because it was both a recommendation from our Product Owner and we had some

earlier experience with this workflow. It was important for us that every task in Azure

DevOps had its dedicated branch (Feature Driven); the creation of branches included some

standard guidelines and that no one should work directly in the main branch as this was the

production-ready branch. Another recommendation from our Product Owner was that we

rebased the commits before the pull requests were made. The significant benefit of rebasing,

compared to merge, is that the project history is linear, making the commit history cleaner. It

eliminates unnecessary merge commits, and it results in a linear project history where one can

follow the tip of the feature all the way to the beginning of the project without any forks

(Atlassian, n.d.). The joint guidelines included that each branch should have the keywords

“SK” followed by the number of the task, for example,

SK-179-lokalforening-component. These uniform measures have contributed to a

structured version control and branch standard, which in turn has increased the quality of the

version control management.

3.5.5 Code Testing

Frontend testing

For the frontend, we started using Enzyme and Jest but found them tedious to work with, as

they require, in our experience, a fair amount of setup for a simple unit test. Luckily for us,

we discovered Cypress. Cypress is an End-to-End testing framework that makes black-box

testing easy by using a built-in web-scraper that navigates through your application (Cypress,

n.d.). Cypress enabled us to test our frontend components without worrying about the internal

state of a component. i.e., Cypress runs tests the same way we have debugged and manually

42

tested the frontend - by clicking and typing. Cypress has increased the quality of our codebase

by providing code coverage and has increased the overall control by pointing out which lines

of code lack code coverage - we even discovered some unused components. The black box

tests confirm the functionality of our application as one can watch cypress run the tests in the

browser.

Testing of the frontend can be a tricky process as design, and functionality is often more

adaptive to change. We continuously tested the design manually and ensured that calculations

were handled correctly by the system. When designing isolated components in React, the

internal state of the component is not directly accessible by the user, and as such, we argue

that it is more fruitful to test that the data flows better in the application. Lacking a user group

to test the application on Cypress has to some extent, filled that role, and gave us 81,7 percent

code coverage in the frontend. See Appendix 11 for an example of a cypress test.

Backend testing

For the backend, we created unit and integration tests using JUnit 5. We created unit tests for

all methods found in both the controller and service classes through most of our project, as

these exist to verify that everything works in isolation and are generally the quickest tests to

make (STF, 2020). However, as the delivery date approached, we wanted to finish all views,

and in order to save time, we decided to create larger integration tests that verified multiple

methods and their dependencies at once. In our opinion, this did not decrease the internal

quality as we already had thorough unit tests for other views, and the final views’ methods

were designed in the same way. Therefore, we found more value in integration tests that

tested the whole flow from saving new elements, duplicate values, and the like instead of

every piece in isolation. The time saved allowed us to finish the remaining views and still

maintain the required 70% or greater test coverage.

3.5.6 CI/CD

Automation with a build and deploy regime has been a requirement from Knowit and, as

such, a central part of our development process. CI/CD is a method to frequently deliver apps

to customers by introducing automation into the stages of app development through

continuous integration, delivery, and deployment (Redhat, n.d.). In Azure DevOps, this can

easily be integrated using Azure Pipelines.

43

We created one Pipeline for the backend and one for the frontend. The build and deployment

steps are defined using YAML - a human-friendly data serialization standard for all

programming languages (YAML, n.d.) - and are saved in azure-pipelines.yml files at the root

level of each repository for automatic detection and integration. The pipeline files can be

written manually in any editor, but Azure DevOps has integrated editors on the website where

one can search and simply configure every step instead.

Figure 20: Pipeline YAML in the browser editor

Both pipelines have a trigger on their respective main branches from the git repository. This

means that any change to the main branches triggers a pipeline run, which is what Continuous

Integration entails. After the pipeline is started, the respective pipelines build the source code

into runnable artifacts - the frontend using Node package manager and the backend using

maven - after running and passing their corresponding tests. We consider this an important

measure to maintain good external quality, as the pipeline will abort if any test fails and thus

will never produce any erroneous software for the end-user as described by the tests.

The final task in our pipelines is the publishing of the generated artifacts. Using Azure

resources, the artifacts are directly deployed to global servers, giving us access to the GUI,

backend, and database on the web after every code change on the main branch - following the

principles of Continuous Deployment and Delivery.

44

3.5.7 Pair Programming

Pair programming is a technique that is used where two programmers work together. During

pair programming, the developers change roles frequently, and the developers switch between

writing the code while the other person observes (Wikipedia, 2020).

At the beginning of the project, we worked together at the University and performed pair

programming, as usual, face-to-face. Our team conducted pair programming early in the

process because we wanted to share knowledge and make sure that all team members got the

same understanding of the system. Pair programming ensured that our team made greater

progress in the project and maintained quality at a higher level. In addition, the use of pair

programming increased the overall productivity of our team and facilitated increased structure

in the code. Because one can detect errors earlier in the process and then avoid having to wait

for the code review to detect errors, and additionally, it provides an extra quality check.

4.0 The product

Below is the link to a video where we present our application.

https://www.youtube.com/watch?v=AgA_KRGFvxk

5.0 Reflection

In the following chapter, we will present our overall reflections regarding the process of the

project, including project management, the quality and quality assurance of both the process

and product, and challenges we have met during this semester.

5.1 Project Management

In this section, we will present our reflections regarding the project management choices we

made both in the initial phase of the project and running the project. We will specifically share

our reflections regarding the agile methodology, risk management, the estimation of the tasks,

and communication.

45

https://www.youtube.com/watch?v=AgA_KRGFvxk

5.1.1 Agile Methodology

The group has strived to follow the Scrum principles, and in summarization, we can say that

we had an overall positive experience with this methodology. The reason is that we succeeded

in delivering functionality after each Sprint, that we held Daily Scrum often, and that we

completed both Sprint Review and Retrospect after each Sprint. These procedures have been

both planned and documented, and some of the documentation is presented in appendix 4.

Even though we think we succeeded in most parts of Scrum, we also had some implications.

This included us not having Daily Scrum every week in the initial phase of the project and, to

some extent, out in the semester. After a few Sprints, we understood how valuable this

procedure was, and we decided to conduct it every Monday, Wednesday, and Friday, due to us

having other arrangements on the other days with other subjects and work. After a few

Sprints, we also understood the importance of spending more time planning the Sprint Review

with our Product Owner and using a great effort to discuss and consider which tasks to

include in the Sprint Backlog and how we should structure our work during each Sprint. We

solved this by setting aside two hours every Friday before a Sprint Review and Retrospect to

discuss the last Sprint, as well as plan the next one. It was a significant improvement for us

compared to the start, where we tended to lack some structure and plan for these events. It is

also important to mention that Azure DevOps has facilitated for us to have a good experience

with working agile and is a tool we strongly recommend for projects in the future. We have

learned and improved our agile working method over the past semester, and we are satisfied

with our agile process.

5.1.2 Risk management

In these trying times, we have experienced that risk management has been of enormous

importance. To handle potential threats and risks, we made a Risk Matrix to become aware of

potential risks and know which measures to implement if something were to happen.

Throughout this semester, we have met challenges that regarded Covid-19 restrictions; team

members felt demotivated because of the circumstances, different personal issues, and some

issues connected to the work with the application itself. The fact that we were aware of the

potential risks connected to these implications has helped us pick each other up through

measures such as conversations, the possibility of working from home, and personal

challenges as a section in the Daily Scrum and arranging social events outside of school. We

46

consider that we have all done our best to minimize the potential risks, and we have

succeeded in reducing the damage that could potentially harm our project result.

5.1.3 Estimation and Prioritization

In terms of estimation, this has been an ongoing challenge throughout the whole semester. In

the initial phase of the project, we were unsure if we were to include administrative tasks in

Azure DevOps and how much time we should put aside for these tasks. After the kick-off at

Knowit, we got some recommendations that we should use about 60 percent of our total time

to work on development tasks (programming, design, etc.). In the same meeting, we were also

recommended to only include these development tasks in the board at DevOps. Additionally,

we received an Excel sheet to help us structure each view into tasks and then estimate each

task in the view.

After estimating each view, we experienced having too large tasks; therefore, we split these

tasks into smaller tasks. The reason for doing this was that it made it easier for us to estimate,

as it is more motivating to initiate a task that is estimated to 2 hours instead of 15 hours. This

measurement ensured more control over the scope of each task, as well as it helped us

estimate similar tasks afterward. Even though we carried out these measures, estimation was

still a continuous challenge, as we have tended to overestimate tasks, with an example of

estimating error handling on a view to five hours which only took us less than an hour.

Estimation has been argued to be important and a challenge from both our Project Owner and

supervisor at UiA over the semester, and this has also been our experience. Even though we

have misestimated at times, we have had a positive experience with trying to estimate, and it

has also been a motivating factor that we have finished most of the tasks in less time than

estimated.

Prioritization has not been of great concern in the initial phase of the project because all user

stories were must-haves. Nevertheless, we have had to prioritize the must-haves, where we

decided to follow the flow of the application of which view to develop first. As a result, we

chose to start on login, followed by the admin panel, and further implement the views from

left to right. We have also added additional tasks and user stories throughout the project, such

as error handling. The user stories and tasks that were added were also based on

recommendations from our supervisor at Knowit. We also had to prioritize within each Sprint

to decide which tasks we were to focus on getting finished first. In this process, the Sprint

47

Review, Sprint Planning, and Sprint Retrospective have been valuable in discussing and

considering how we should prioritize as a team.

5.1.4 Communication

Communication has been a key in succeeding in this project, and we have found the

communication regarding issues outside the project scope as the most important in keeping up

our motivation and work ethics. The physical meetings between the group have been the most

valuable because it includes rich communication and the feeling of support in another way

than we have experienced over digital platforms such as Discord and Messenger. Every team

member has felt lonely to some degree this semester, and it has been a prioritization to

support each other through these times. Even though we have had periods where we were

forced to sit at home and felt challenges with motivation and loneliness, we kept a continuous

dialogue through digital platforms and physical meetings.

The consciousness surrounding the importance of communication in these pandemic times

has facilitated the success of our project and has been a key factor in us utilizing a good

process and delivering a good product.

5.2 Quality of End Product

We wanted to achieve a high-quality system, which has been an important aspect for us

throughout the whole project. The quality of our product is ensured by us accomplishing both

the internal and external quality measures, which included requirements from both Knowit

and Norske Sanitetskvinner.

For Knowit, high quality meant us satisfying the requirements of finishing all the views,

having adequate test coverage of at least 70 percent, and modernizing the stack. To ensure that

we met these requirements, we implemented tests, predefined code standards, and version

control throughout the project. We have gotten continuous feedback from Knowit, and this

feedback has been overall positive, with some minor suggestions for improvements, which we

have prioritized and adapted to. Because of the arguments listed, we are confident that we

have delivered an end product of good quality to the client, and it has been confirmed by our

Product Owner several times.

48

The end-users required that the system offer the exact same functionality as the existing

application and that it should be easy and understandable to use, especially because of the

characteristics of this user group. We have put a lot of effort into designing the web

application by following guidelines such as WCAG and other sources on good design. It

would have been productive to perform end-user testing on this group, but completing an

end-user test proved difficult, as we did not have access to Sanitetskvinnene, and the covid

restrictions made it difficult to find people in the target group. We considered asking our

grandparents to test the application, but none of them was available or willing to try. If we had

the time and access to the end-user, it would have been valuable for us to ensure further

quality by completing user tests. We are still confident that this system facilitates a good user

experience.

5.3 Challenges

In the following sections, we will present the challenges we have had throughout the project

regarding Covid-19, cooperation with our client Knowit and implications regarding roles and

role distributions.

5.3.1 Covid-19

The global pandemic Covid-19 has brought numerous challenges that have impacted

motivations, workflow, and the overall structure of this course. The semester was supposed to

be our opportunity to work at a company, build relationships, and experience what it is like at

these companies, putting ourselves out there and potentially getting a job in return. The

semester was instead filled with a lackluster of social interactions, coupled with Zoom and

digital meetings. The fear of becoming infected, infecting others, the general worry about the

future has without a doubt been a force to reckon with. Although concerning, we have gained

insight into the remote work experience and ascertained new skills to overcome the

challenges we have faced. The importance of trust, giving the team flexibility and means to

customize workflow has allowed the individuals in GruppeTid to perform at their best during

these troubling times.

The amount of COVID-19 infections increased early in the semester, already in February in

Kristiansand, which led to us having to work from home. Early in the work process, it became

difficult to find motivation for a new year of working at home. Because our group was

49

looking forward to starting working at Knowit sør’s office at least once a week - being able to

know how they work and have the opportunity to meet some of their employees. Luckily, the

kick-off with Knowit was not canceled before the lockdown started, and we got to visit their

office. During the kick-off, we saw their office, meeting rooms and met some of their

employees. Attending the kick-off with Knowit did give us insight into what a day at their

office was like and their work environment. In addition, we got to see how much help it was

“that one time” we got to visit them and received guidance “in person” with two employees

from their company.

After the meeting with Knowit, the pandemic restrictions intensified, and the group

collaboration became digital for a short period. Regardless, working from home did not

impact the progress or the productivity of our individual effort, but it instead affected the

collaboration within our team as it became difficult with rich communication for this period.

Facing these challenges, we made several countermeasures to solve them in the best possible

way. First, we made a group contract to ensure that the group shall meet every Monday,

Tuesday, and Wednesday (either physical or digital) to work together on the project. The

purpose of creating a group contract was to secure the project in relation to maintain good

routines during the pandemic and establish rules in case conflicts should arise. Secondly, we

agreed to keep the social aspect in the group going and meet up once in a while to be social

together.

The third factor that did contribute to dealing with the challenges during the pandemic was

Daily Stand Up: it has increased quality of our product and facilitated for us to communicate

with each other. The stand-ups led to good conversations within the group and contributed to

our understanding and motivating each other more easily and providing input for each

individual person in the team. We also experienced that daily standup naturally moved the

conversation into aspects regarding planning and how to move forward with the product;

overall daily standup has contributed to driving this project forward.

5.3.2 Roles and Role Distribution

In the initial phase of the project, we had formal roles stated in the group contract, which

included integrator, administrator, technical supervisor, and contact person with the client

Knowit. The fact that our team has worked together on projects for about three years has

contributed to us having experience in which roles we should include and who should have

50

which roles. We chose not to have a Scrum Master, and in retrospect, we think we could have

included this solely for the arrangement of internal meetings in the Team. Nevertheless, we do

not think that having a Scrum Master would have changed the result of either the process or

product as we felt an equal responsibility to contribute to accomplishing a good agile work

process.

During the development process, there were no clear roles initially as we wanted to learn and

experience every aspect of the project. Nevertheless, the roles were crystallized throughout

the project based on interests and experience. In retrospect, we think that we could have made

the role distribution in the development even more precise so that every team member felt

responsible for one specific aspect of the development. We could argue that this would have

led to more motivation and affiliation to a specific feature. In opposition to this, we could still

argue that this would have led us not to familiarize ourselves with the whole project and that

this would have made us more vulnerable if something in the risk matrix were to happen.

Overall we can say that our role distribution has been important in facilitating the

development process.

5.4 Summarization

In closing, we are well satisfied with both the process and the product, considering we met the

requirements from Knowit, completed all the views, implemented design principles, and had

adequate test coverage of the whole system. We also documented the process thoroughly

during the whole semester, and we also accomplished an agile work process in a satisfying

manner. In retrospect, we can say that we had some challenges, especially issues connected to

the unpredictable situation of Covid-19, but all in all, we are well satisfied with our delivery

in this bachelor’s project.

51

6.0 Statement from Client

52

7.0 Self evaluation

Henriette Andersen

During this project I have gained a lot of new experience and learned much when it comes to

team collaboration or getting acquainted with new programs/technologies, and how it is to

cooperate with a company. At the beginning of the project I contributed through the initial

planning and analysis process, where I had the main responsibility for risk management, and I

learned a lot about how to manage risk and how much it can affect a project. Throughout the

project, I have had the main responsibility for the design, which has suited me well,

considering that I personally am interested in details and aesthetics. Further, I have attended

and contributed through all sprint activities such as: Sprint planning, Sprint Review and Sprint

retrospective. In addition, I have had a responsibility for writing on the report.

Bjørnar W. Risdalen

During this project I have gained valuable insight in how it is to work on a real IT project. My

biggest takeaway has been how important continuous estimation and re-estimation of tasks

have been. Personally I am most satisfied with finally learning how to configure and set up

CI/CD pipelines, which has had me very intrigued since the summer of 2020.

In the initial phase of the project I have contributed to planning and analysing the project. I

have participated in all phases of the Scrum process, as well as writing on the report

throughout. Additionally I edited the product video and did the voice-overs. Early on I

worked full-stack along with my team members, but soon fell into a more backend oriented

role where I was responsible for all things pipelines and azure as well as the backend

codebase. However, I really enjoyed the tailwind workflow, so I have throughout been

collaborating with whomever wanted additional input on how to design components using

that framework.

Overall I am happy with the product we have created and the processes we have been

through, as well as our collaboration with Knowit Sør, despite the pandemic situation.

53

Hanne P. Sjursen

During this project I have experienced working on a full-stack project in collaboration with an

IT company and this has by far been the semester I have learnt the most, both on how I work

in a team and about my own strengths and weaknesses. In the initial phase of the project, I

contributed to planning and analysing the project and contributing to a successful agile work

process. I have worked full-stack, including design, front-end and back-end on several of the

views, both by myself and with the use of pair programming. Furthermore, I have attended all

of the Sprint activities, and I have had a responsibility for writing the report. I hope and

believe that I can make use of these valuable experiences in a future job, where I hopefully

can combine IT, with my bachelor’s degree in public health work.

Trym E. Staurheim

At the beginning of the project, I contributed to the initial planning and analysis of the project

and had a full-stack developer role alongside my team. Nevertheless, as the process and

project matured, I fell more into a frontend developer role, primarily responsible for

implementing logic into the frontend views and components.

However, I have also been active in pair programming, and rubber-duck debugging and

contributed to the report. I have been involved throughout the entire scrum process and took

great interest in understanding Azure DevOps. I have garnered valuable experience in project

management and development, from the scrum process to working full-stack. I am

particularly pleased about learning more about Typescript and React and setting up end-to-end

tests with Cypress.

In sum, I am proud of the product we have delivered and witnessing myself and my peers

grow as our development process has matured by adapting to ever-changing circumstances

from Covid-19 to computer breakdowns.

54

References

Agile Alliance. (n.d.). Product Backlog. Retrieved from:
https://www.agilealliance.org/glossary/backlog/

Agile Manifesto. (n.d.). Manifesto for Agile Software Development. Retrieved from:

http://agilemanifesto.org/

Agility. im. (n.d). What is a daily stand up?. Retrieved from:

https://agility.im/frequent-agile-question/what-is-a-daily-stand-up/

Albano, J. (2020, April 21). Design Patterns in the Spring Framework. Baeldung. Retrieved

May 04, 2021, from: https://www.baeldung.com/spring-framework-design-patterns

Atlassian. (n.d.). Gitflow Workflow. Retrieved 04 29, 2021, from:

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow#:~:text=The

%20overall%20flow%20of%20Gitflow,merged%20into%20the%20develop%20branch

Atlassian. (n.d.). Merging vs. Rebasing. Retrieved from 05 06, 2021, from:

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Barnes, D. J., & Kölling, M. (2017). Objects First with Java: A Practical Introduction Using

BlueJ (6th ed.). Pearson Education Limited.

Benediktsson, O., Dalcher, D., & Thorbergsson, H. (2006, June). Comparison of software

development life cycles: a multiproject experiment. IEE Proceedings – Software, 153(3),

doi:87-101. 10.1049/ip-sen:20050061

Benyon, D. (2014). Designing Interactive Systems - A comprehensive guide to HCI, UX and

interaction design (3 ed.). Harlow: Pearson Education Limited.

Codecademy. (n.d.). MVC: Model, View, Controller. App organization explained. Retrieved

from: https://www.codecademy.com/articles/mvc

55

https://www.agilealliance.org/glossary/backlog/
https://www.agilealliance.org/glossary/backlog/
http://agilemanifesto.org/
http://agilemanifesto.org/
https://agility.im/frequent-agile-question/what-is-a-daily-stand-up/
https://www.baeldung.com/spring-framework-design-patterns
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow#:~:text=The%20overall%20flow%20of%20Gitflow,merged%20into%20the%20develop%20branch
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow#:~:text=The%20overall%20flow%20of%20Gitflow,merged%20into%20the%20develop%20branch
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.codecademy.com/articles/mvc

Comley, C., Urban, E., Helen Huang, H., Coulter, D., Levy, R., Jacobs, M., Chase Wilson, C.,

Sherer, T., Danielson, S., & EE, K. (2021, January 22). What is Azure DevOps? Retrieved

April 29, 2021, from:

https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-

devops

Cprime. (n.d.). What is Agile? What is Scrum? Retrieved April 23, 2021, from:

https://www.cprime.com/resources/what-is-agile-what-is-scrum/

Cypress. (n.d.). Testing has been broken for too long. We figured it was time to fix it.

Retrieved May 11, 2021, from: https://www.cypress.io/how-it-works

Det kongelige kulturdepartement. (2020). Endringer i likestillings- og diskrimineringsloven

mv. (universell utforming av IKT-løsninger). Retrieved from:

https://www.regjeringen.no/contentassets/28fcfab6e6a746a58cb38a07802d9d1f/no/pdfs/prp20

2020210141000dddpdfs.pdf

DevOpsGroups. (n.d.). What is Azure DevOps? Retrieved from:

https://www.devopsgroup.com/insights/resources/tutorials/all/what-is-azure-devops/

Experienceux (n.d). What is wireframing? Retrieved from:

https://www.experienceux.co.uk/faqs/what-is-wireframing/

Facebook Inc. (n.d.). React A JavaScript library for building user interfaces. Retrieved 05 11,

2021, from: https://reactjs.org/

Feiler, P., & Humphrey, W. (1993, February 26). Software Process Development and

Enactment: Concepts and Definitions. Proceedings of the Second International Conference on

the Software Process-Continuous Software Process Improvement, 147-158. doi:

10.1109/SPCON.1993.236824

Fowler, M. (2020, April 22). MartinFowler. Domain Driven Design. Retrieved from:

https://martinfowler.com/bliki/DomainDrivenDesign.html

56

https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://www.cprime.com/resources/what-is-agile-what-is-scrum/
https://www.cypress.io/how-it-works
https://www.regjeringen.no/contentassets/28fcfab6e6a746a58cb38a07802d9d1f/no/pdfs/prp202020210141000dddpdfs.pdf
https://www.regjeringen.no/contentassets/28fcfab6e6a746a58cb38a07802d9d1f/no/pdfs/prp202020210141000dddpdfs.pdf
https://www.devopsgroup.com/insights/resources/tutorials/all/what-is-azure-devops/
https://www.devopsgroup.com/insights/resources/tutorials/all/what-is-azure-devops/
https://www.experienceux.co.uk/faqs/what-is-wireframing/
https://reactjs.org/
https://martinfowler.com/bliki/DomainDrivenDesign.html

Gebrewold, Y. (2021). Is Tailwind Really Worth it? . Retrieved from:

https://javascript.plainenglish.io/is-tailwind-css-really-worth-using-1830a706231a

GeekForGeeks. (2020, August 5). Differences between Black Box Testing vs White Box

Testing. Retrieved May 10, 2021, from:

https://www.geeksforgeeks.org/differences-between-black-box-testing-vs-white-box-testing/

Idan, H. (2016, May 10). The Top 100 Java Libraries in 2016 – After Analyzing 47,251

Dependencies. Retrieved from:

https://www.overops.com/blog/the-top-100-java-libraries-in-2016-after-analyzing-47251-depe

ndencies/

Jonnalagadda, G., Shafey, S., Lynah, W., Massetti, M., Maerten, P., Wieczorek, S., Landzaat,

S., Probst, M., Schuster, A., Oxborough, C., Bains, R., & Bonser, M. (2017, July). Create

value for your organisation with Agile Project Delivery. 1. Retrieved from:

https://www.pwc.com/gx/en/actuarial-insurance-services/assets/agile-project-delivery-confide

nce.pdf

Knowit. (2020). Innovative løsninger. Retrieved from:

https://www.knowit.no/tjenester/solutions/

Lavanya, N. & Malarvizhi, T. (2008). Risk analysis and management: a vital key to effective

project management. Retrieved from:

https://www.pmi.org/learning/library/risk-analysis-project-management-7070

Mendez, J. (2015, July 31). Techniques for improving the Sprint review Scrum. Retrieved

from:

https://www.jesusmendez.ca/techniques-for-improving-the-sprint-review-in-scrum/

Microsoft. (2021, March 15). Define features and epics. Retrieved from:

https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=a

zure-devops&tabs=agile-process

57

https://javascript.plainenglish.io/is-tailwind-css-really-worth-using-1830a706231a
https://javascript.plainenglish.io/is-tailwind-css-really-worth-using-1830a706231a
https://www.geeksforgeeks.org/differences-between-black-box-testing-vs-white-box-testing/
https://www.overops.com/blog/the-top-100-java-libraries-in-2016-after-analyzing-47251-dependencies/
https://www.overops.com/blog/the-top-100-java-libraries-in-2016-after-analyzing-47251-dependencies/
https://www.pwc.com/gx/en/actuarial-insurance-services/assets/agile-project-delivery-confidence.pdf
https://www.pwc.com/gx/en/actuarial-insurance-services/assets/agile-project-delivery-confidence.pdf
https://www.knowit.no/tjenester/solutions/
https://www.pmi.org/learning/library/risk-analysis-project-management-7070
https://www.jesusmendez.ca/techniques-for-improving-the-sprint-review-in-scrum/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=agile-process

MindTools. (n.d.). The PAEI Model. Retrieved from
https://www.mindtools.com/pages/article/paei-model.htm

Project Lombok. (n.d.). Project Lombok. Retrieved from: https://projectlombok.org/

PYPL. (2021, 9. April). PYPL PopularitY of Programming Language. Retrieved from:

https://pypl.github.io/PYPL.html

React. (n.d.). React. Retrieved from: https://reactjs.org/

Facebook Inc. (n.d.). Create a New React App. Retrieved from:

https://reactjs.org/docs/create-a-new-react-app.html

Redhat. (n.d.). DevOps. What is CI/CD? Retrieved from:

https://www.redhat.com/en/topics/devops/what-is-ci-cd

STF. (2020, September 13). Unit Testing. Retrieved from:

https://softwaretestingfundamentals.com/unit-testing/

Stack Overflow. (2018, January 28). Which Methodologies Do Developers Use? Stack

Overflow. Retrieved April 23, 2021, from:

https://insights.stackoverflow.com/survey/2018#development-practices

Stack Overflow. (2021, 13. April). Stack Overflow Trends. Retrieved from:

https://insights.stackoverflow.com/trends?tags=reactjs

Scrum Org. (n.d.). What is a Sprint Backlog? Retrieved from:

https://www.scrum.org/resources/what-is-a-sprint-backlog

Scrum Org. (n.d.). What is a Sprint Planning? Retrieved from:

https://www.scrum.org/resources/what-is-sprint-planning

Scrum Org. (n.d.). What is a Sprint Retrospective? Retrieved from:

https://www.scrum.org/resources/what-is-a-sprint-retrospective

58

https://www.mindtools.com/pages/article/paei-model.htm
https://www.mindtools.com/pages/article/paei-model.htm
https://projectlombok.org/
https://pypl.github.io/PYPL.html
https://reactjs.org/
https://reactjs.org/docs/create-a-new-react-app.html
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://softwaretestingfundamentals.com/unit-testing/
https://insights.stackoverflow.com/survey/2018#development-practices
https://insights.stackoverflow.com/trends?tags=reactjs
https://www.scrum.org/resources/what-is-a-sprint-backlog
https://www.scrum.org/resources/what-is-sprint-planning
https://www.scrum.org/resources/what-is-a-sprint-retrospective

Scrum Org. (n.d.). What is a Sprint Review? Retrieved from:

https://www.scrum.org/resources/what-is-a-sprint-review

Spring. (n.d.). Core technologies. Retrieved from:

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html

StackShare. (n.d.). Azure DevOps. Retrieved from: https://stackshare.io/azure-devops

Tailwind. (n.d.). Rapidly build modern websites without ever leaving your HTML. Retrieved

from: https://tailwindcss.com/

Talbot, J. (2018, July 31). What's right with risk matrices? Retrieved April 23, 2021, from:

https://www.juliantalbot.com/post/2018/07/31/whats-right-with-risk-matrices

Tiobe. (2021, April). TIOBE Index for April 2021. Retrieved from:

https://tiobe.com/tiobe-index/

Visual Paradigm. (n.d.). What is Burndown Chart in Scrum? Retrieved from:

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/

Visual Paradigm. (n.d.). What is Scrum Team? - Scrum Guide. Retrieved from:

https://www.visual-paradigm.com/scrum/what-is-scrum-team/

WCAG. (2020, 7. January). Web Content Accessibility Guidelines - What is WCAG?

Retrieved from:

https://www.essentialaccessibility.com/blog/web-content-accessibility-guidelines-wcag

Wicksell, T. (2019, 16. October). Taylor Wicksell and Tom Gianos at SpringOne Platform

2019. Retrieved from: https://www.youtube.com/watch?v=mln3_o6qlBo

Wikipedia. (2021, 17. March). Linus’s Law. Retrieved from:

https://en.wikipedia.org/wiki/Linus%27s_law

59

https://www.scrum.org/resources/what-is-a-sprint-review
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://stackshare.io/azure-devops
https://tailwindcss.com/
https://www.juliantalbot.com/post/2018/07/31/whats-right-with-risk-matrices
https://tiobe.com/tiobe-index/
https://www.visual-paradigm.com/scrum/scrum-burndown-chart/
https://www.visual-paradigm.com/scrum/what-is-scrum-team/
https://www.visual-paradigm.com/scrum/what-is-scrum-team/
https://www.essentialaccessibility.com/blog/web-content-accessibility-guidelines-wcag
https://www.youtube.com/watch?v=mln3_o6qlBo
https://en.wikipedia.org/wiki/Linus%27s_law

Wikipedia. (2020, 18.December). Pair programming. Retrieved from:

https://en.wikipedia.org/wiki/Pair_programming

YAML. (n.d.). The Official YAML Web Site. Retrieved from: https://yaml.org/

Zonkyio. (2021, 20. January). Zonky Embedded Postgres. Retrieved from:

https://github.com/zonkyio/embedded-postgres

60

https://en.wikipedia.org/wiki/Pair_programming
https://yaml.org/
https://github.com/zonkyio/embedded-postgres

Appendix 1: Group contract

61

62

63

Appendix 2: Wireframes

64

65

66

Appendix 3: Risk matrix

Lite sannsynlig: 1 Lite farlig: 1

Sannsynlig: 2 Farlig: 2

Meget sannsynlig: 3 Kritisk 3

Svært sannsynlig: 4 Katastrofal 4

Risiko
1 til 5

Konsekvens
1 til 5

Sannsynlighet Risiko Tiltak for at dette
ikke skal skje

Tiltak for å
redusere skade

Gruppemedlemme
r kan bli mindre
effektive av å
jobbe hjemmefra

4 3 12 Sette opp møter
med faste
klokkeslett. Jobbe
sammen i par for å
motivere hverandre
til enhver tid.

Noen må steppe
opp å hjelpe å
motivere
hverandre.

At
gruppemedlemme

3 4 12 Ha en klar plan på
hva som skal bli

Jobbe sammen på
store oppgaver

67

ne får for lite søvn gjort hver dag. som er mer
tidkrevende.

For høyt
stressnivå innad
individuelt i
gruppen.

3 4 12 Holde hverandre
oppdaterte til
enhver tid.

Gjennomføre
daily stand up,
slik at man har
kontroll over
prosjektet.

At et eller flere
gruppemedlemme
r kan bli smittet av
covid-19

4 2 8 Ta hensyn, og følge
smittevern reglene
og restriksjonene

Lage et avsnitt i
gruppe kontrakten
som inneholder
smittevern.

At
gruppemedlemme
r blir for lenge på
campus

2 4 8 Gi hverandre en
heads-up når man
merker at
produktiviteten
synker.

Tiltak er å ha
faste rutiner og
klokkeslett.

Sent svar, eller lite
oppfølging fra
oppdragsgiver

4 2 8 Hyppig kontakt,
avtale møter på
forhånd.

Ta kontakt med
veileder fra UIA,
eller eventuelt ta
egne valg.

Manglende
kompetanse i
prosjektet

3 2 6 Gruppen setter av
tid til å lese seg
opp på nytt stoff.

Lære av
hverandres
styrker.

Mangel på det
sosiale i gruppen

2 3 6 Tillate å sette av tid
til pauser, og til å
diskutere andre
ting enn prosjektet.

Ta jevnlig pause i
10-15 min i løpet
av en arbeidstime.

At
gruppemedlemme
r glemmer å spise.
F.eks Trym.

2 3 6 Minne hverandre
på jevnlig pause
med inntak av mat.

Ta med snacks
som frister Trym.

Gnisninger i
samarbeidet /
individuelt

3 2 6 Opprettholde god
kommunikasjon
med gruppen.
Forventningsavklar
ing. Holde et jevnt
og godt samarbeid.

Opprette en god
gruppekontrakt,
og fordele roller.

At et eller flere
gruppemedlemme
r må holde seg
hjemme pga vente
karantene

2 3 6 Holde seg til en
fast kohort, og ikke
treffe alt for mange
utenom
gruppemedlemmer.
.

De som er igjen
på skolen burde
være tilgjengelig
digitalt, hvis en /
flere må ha
hjemmekontor.

Datamaskin
“kræsjer”

2 2 4 Jevnlig gå gjennom
om det er noen
gamle programmer
som kan
avinstalleres.

Eventuelt kjøpe
ny PC.

68

Appendix 4: Sprint review

Sprint review - Model

Sprint Status Things to Demo Quick Updates What’s next

Project Status:
What is the status of
the project?

Where are we in terms
of project completion?

- Stories com

How many sprints left
?

Is the project on track?

Project completion
% :
(Storie completed,

stories forecasted)

#Sprints left for
completion

Project on budget? y/n
Project on track? y/n

Sprint goal: Why is it
worthwhile to run the
sprint? What should be
achieved? For
instance, address a
risk, test an
assumption, or deliver
a feature.

In this section our
team should list
everything that is
considered “Done”,
this should be
demonstrated by the
development team
during the sprint
review meeting.

(Tip: Keeping track
of the sprint review,
use a list and mark
items after you are
done showing it).

List all sprint
backlog items
considered not
“Done”, to get
feedback from the
stakeholders.

(Tip: Write notes
under the sprint
review meeting to
keep track of the
process).

In this section the
team should list all
everything that will
be the sprint goal for
the next sprint.

(In this section it is
important to
exchange feedback)

Ask open questions:
- What do you think
about what's next?

-What about the
priority? Is it
accurate ?

-What else should
we keep in
consideration?

Sprint Review Meeting 15.03

69

Sprint Status Things to Demo Quick Updates What’s next

Project Status: What is
the status of the project?

- closed 9 stories
- half way
- The views that

are left: (styret,
eiendom,
aktiviteter, kos,
regnskapstall og
rapport)

Where are we in terms of
project completion?

- half way

How many sprints left?
- 4 sprints left

Is the project on track?
- 51% completed

of all stories

Project completion %
:
Stories Completed: 51%

stories forecasted)

Sprints left for
completion: 4 sprints left

Project on budget? Yes
Project on track? Yes

Sprint goal: Why is it
worthwhile to run the
sprint? What should be
achieved? For instance,
address a risk, test an
assumption, or deliver a
feature.

Frontend:

1. Admin Panel
(du kan nå
oppdatere en
forening, du
kan slette en
forening, du
kan gå til
lokalforening)

2. Lokalforening
(Design, trykk
på lagre gå
videre, så blir
dataen stubba)

3. Gaver og
bidrag. (Legge
til å fjerne rad)

Backend:

List all sprint backlog
items considered not
“Done”, to get
feedback from the
stakeholders.

Trym viser backlog.

Henriette can write
notes.

(Tip: Write notes under
the sprint review
meeting to keep track
of the process).

In this section the
team should list all
everything that will
be the sprint goal for
the next sprint.

Sprint goal for
sprint 5:

- Bli ferdig med
Admin Panel,
Lokal
Forening. og
Gaver Bidrag

- Jobbe mot en
bedre burn
down

- Fortsette med
daily stand up

- Sprint
retrospective

- Komme bedre
i gang med
rapporten

(In this section it is
important to exchange
feedback)

Ask open questions:
- What do you think
about what's next?

-What about the
priority? Is it accurate
?

-What else should we
keep in consideration?

70

Sprint review 06.04

Sprint Status Things to Demo Quick Updates What’s next

Project Status: What is
the status of the project?

Where are we in terms of
project completion?

- Over halfway
(sprint)

- Stories
completed: 4

- Views that are
left: (styret,
eiendom,
aktiviteter, kos,
regnskapstall og
rapport) Styling
is done on
Eiendom.

How many sprints left ?
- 3 Sprints left

Is the project on track?
- 56% completed

user-stories

Project completion %
:
Stories Completed:

- 51% stories
forecasted)

Sprints left for
completion:

- 3 sprints left

Project on budget?
- Yes

Project on track?
- Yes (but no on

completing
everything)

Challenges:

Frontend:
- Admin

(Generell
Feedback)

- Du må nå være
innlogget for å
tilgang

- Eiendom og
virksomheter
(Styling, tables,
legg til og fjern
rad)

Backend:
- Lokalforening
- Test coverage
- Error håndtering
- json structure på

response

One of the team
members Show the
backlog with items
considered not done.

(Tip: Write notes
under the sprint
review meeting to
keep track of the
process).

In this section the
team should list all
everything that will
be the sprint goal for
the next sprint:

- Mandag &
Onsdag. (Kl
11.00, daily
standup)

- Style Styret
- Style Rapport
- Gjøre ferdig

gaver og
bidrag

- Skrive tester
for backend

- Skrive flere
frontend tester

- lage radio
buttons
AdminPanel

-

- What do you think
about what's next?

-What about the
priority? Is it accurate
?

-What else should we
keep in consideration?
- time management

71

- No sleep
- Covid-19
- Test coverage
- Motivation
- Bjørnar’s

computer crashed

Sprint goal: Why is it
worthwhile to run the
sprint? What should be
achieved? For instance,
address a risk, test an
assumption, or deliver a
feature.

Sprint review 16.04

Sprint Status Things to Demo Quick Updates What’s next

Project Status: What is
the status of the project?

Where are we in terms of
project completion?

- Over halfway
(sprint)

- Stories
completed: 7

- Views that are
left: (aktiviteter,
kos,
regnskapstall og
rapport)

How many sprints left ?
- Vi er nå i sprint

7, 2 Sprints left
Is the project on track?

- 71% completed
user-stories
(56% -> 71%)

Frontend:
Backend:

Test coverage gått
opp (74%)

Fjernet unødvendige
filer fra test coverage

Slettet ubrukte
metoder

All backend for
EiendomVirksomhet

Demo-rekkefølge

Login:
(usikker) Login nå

med foreningsnummer
istedenfor lagret ID

AdminPanel:
radio buttons

One of the team
members Show the
backlog with items
considered not done.

Vise backlog:
Her skulle jeg vist

hva som ikke ble
ferdig, men etter en
fin crunch på fredag
til og med søndag ble
alle stories og tasks
for sprint 6 ferdig. :)

In this section the
team should list all
everything that will
be the sprint goal for
the next sprint:

Vise backloggen
Tasks:

- Feilhåndtering
- Aktiviteter
- Kos
- Backend /

Frontend
aktiviteter

- Kurs
opplæring,
samarbeidspro
sjekt

- Regnskap

72

Estimat: f.eks eiendom
og bidrag hadde 98
timer, men vi brukte 33
timer. (40)

Styret brukte vi 19
timer (bedre enn
best-case som var 24)
og hadde estimert 64.

Project completion %
:Project on budget?

- Yes
Project on track?

- Yes (but no on
completing
everything)

Challenges:
- Rapporten

(fordelt timer på
rapport og
programmering)

- IS-305
(innlevering en
gang i uken de
neste tre ukene)

- Deadline (Både
prosjekt og
rapporten er
deadline på likt)

Sprint goal:
-Å fullføre den påbegynte
viewsene, før vi startet på
noe nytt.
-Parprogrammering
-Samarbeidet
-Vi har hatt mer kontroll i
forhold til prosjektet
(Vært mer på skolen, mer
samarbeid, fulgt opp
daily standup oftere)

Lokalforening:
Fjernet “antall”
Kun Admin tilgang

til spesifikke felter.
Henter ut data fra

database og sende data
“Lagre” pusher

videre til Styret

Styret
Footer - standardisert
begynt overgang til ny
Table component

styling styret.
sende og motta data.

Eiendom og V.
Table implementert

(hvis alt går som det
skal)
- Table component

Gaver og bidrag
sende og motta data.
full overgang til ny

Table component for
gjenbruk

DELETE hvis fjerner
en rad og sender på nytt

Sprint goal:
Bli ferdig med alle
views som er oppsatt.
Hvis vi får tid tar vi
med rapportviewet
også.
Hovedprioritering ila.
sprinten har vi tenkt
er feilhåndtering og
tilbakemelding på
allerede eksisterende
views.

Sprint Review 30.04

Sprint Status Things to Demo Quick Updates What’s next

73

Project Status:
What is the status of the
project?

Where are we in terms of
project completion?

- Stories
completed: 11

- Views that are
left: 0

- En mangel i
admin panel, der
vi må knytte opp
en knapp til
backend

How many sprints left ?
- Vi er nå i sprint

8, siste sprinten

Is the project on track?
- 88% completed

user-stories
(71% -> 88%)

Project completion %
:

Project on track? Yes

Challenges:
- Estimering har

vært både en
utfordring og en
forbedring fra
forrige gang.
Bra: 18t totalt,
brukte 16t 15m
Bommet max 2
timer på en av
oppgavene
Utfordring:
Bommet med 3t
55 minutter på en
task som tok 5
minutter.

Sprint goal:
- Bli ferdig med

alle views som

Frontend:

Backend:
Test coverage

gått opp (74% →
63,72%, men test
for rapport
generering lages i
kveld)
Rapport generes.

Demo-rekkefølge
- Vise

feilhåndterin
g på alle
underveis

ADMINPANEL:
fjernet at passord
hentes ut

Eiendom:
Fikset slik at bruker
kan legge til rad
mens de tabulerer.

Aktivitet:
- Vise hele

Aktivitet

Kos:
- Vise hele

Kos

Gaver og bidrag:

Regnskapstall:
- Vise hele

regnskapstab
ell

Rapport:
- Vise hele

rapport
- last ned

Rapport

Ferdig med alle user
stories i sprinten,
utenom at
års-rapporten i Excel
er ~50%

In this section the
team should list all
everything that will
be the sprint goal for
the next sprint.

I siste sprint:
- Logg-ut

knapp
- Fix ups -

footer, glemt
passord, fikse
tables på
regnskapstabe
ll

- (Gjøre ferdig
rapport)

- Ferdigstille
bacheloroppg
aven

Sprint goal:
- Fullføre 100%
- Trym har et

personlig mål
om å gå fra
10% -20%

- Vi har satt oss
noen delmål i
forhold til
rapporten osv

Ask open questions:
- What do you think
about what's next?

-What about the
priority? Is it accurate
?

-What else should we
keep in
consideration?

74

er oppsatt. Hvis
vi får tid tar vi
med
rapportviewet
også.

- Hovedprioriteri
ng ila. sprinten
er
feilhåndtering
og
tilbakemelding
på allerede
eksisterende
views.

Appendix 5: Sprint retrospective

Retrospective 15.02.2021

Hva gikk bra ?
- Reestimerte backlog og fikk bedre oversikt.
- Godt miljø
- Kommet godt i gang.
- God mappe- og kodestruktur.
- Gode rutiner.
- Fin commit history
- Daily standup
- Avtalt tacokveld

Hva gikk dårlig ?
- Dårlig estimering innledningsvis.
- Dårlig til å skrive timer
- Dårlig til å dokumentere
- Litt lite produktive.
- Sette av mer tid til retrospekt
- Sette av mer tid til demo.

- Bli flinkere til å opprette mindre tasks.

75

Hva kan forbedres?
- Bli flinkere til å føre opp timer
- Bli til å dokumentere unnderveis;
- Bli mer produktive
- Daily standups kan bli mer spesifikk.
- BLI ENIGE OM STANDUP RUTINE; mangel på struktur

når standup.

Retrospective 01.03.2021

Hva gikk bra ?

- Lærte masse nytt
- Godt samarbeid
- Gode arbeidsrutiner
- Godt læringsmiljø
- God oversikt
- Høyere kvalitet på arbeidet
- Oppgaver blir ferdige

Hva gikk dårlig ?
- Sprint Review
- Lav motivasjon midt i sprinten
- For store oppgaver
- Sprinten blir avsluttet før retrospekt

Hva kan forbedres?

- Opprette en mal til sprint review(forberede seg bedre til sprint
review)

- Be om hjelp tidligere
- Rapporten
- Huske å skrive timer
- Akseptansekriterier for brukerhistorier

Retrospective 15.03.2021

Hva gikk bra ?

- Sprint Review (opprettet en mal og fulgte den, god
tilbakemelding)
- Spørre om hjelp tidligere
- Skrive mer på rapporten
- Akseptansekriterier (Trym flink. kritikk til oss andre)
- Størrelse på taskene gikk bra, men kan fremdeles forbedres
- Generelt bra

Hva gikk dårlig ?
- Daily Stand Up
- Hjemmekontor
- Lavere motivasjon ifh til hjemmekontor

- Påminne hverandre om å notere timer

76

Hva kan forbedres?
- Akseptansekriterier
- Daily Stand Up (kortere, presise, konkrete og fastsatte,
annenhverdag)
- Kutte ned på noen av tasksene

Retrospective 30.03.2021

Hva gikk bra ?

-Dele tasksene inn i mindre oppgaver
- Burndown var mye bedre
- Time notering
- Fleksibel capasity
- Fulgte timene som var satt
- For enkelte har det gått fint å skrive rapport

Hva gikk dårlig ? -Vagt med oppmøte på tiden

Hva kan forbedres? -Rapportskriving (for noen)

Retrospective 16.04.2021

Hva gikk bra ?

-Sprint Review (Demo,
-Daily Stand up
-Bedre rollefordeling
-Skrevet mer på rapporten
-Størrelse på taskene
-Lagt ned litt ekstra timer i prosjektet
-At vi kan samarbeide på skolen
-Gruppen er generelt mer motiverte

Hva gikk dårlig ? - Motivasjonen er opp og ned
-Slurvefeil
-Datastruktur kommunikasjonsfeil

Hva kan forbedres?
-Kommunikasjon
-Backloggen, gjør den klar før vi faktisk starter på sprinten

Retrospective 30.april

-Sprinten var veldig godt planlagt og gjort helt klar før vi startet

77

Hva gikk bra ?
-Sprint Review (alle bidro)
-Bra struktur på rapporten
-Daily standup
-Strls på tasksene
-Alle har gitt ekstra timer

Hva gikk dårlig ?

-Stress
-Møte på tiden
-Litt slurvefeil

Hva kan forbedres?
-Review av Pull request
-Møte på tiden / Bedre kommunikasjon
-Forbedre fordeling av oppgaver / punkter i forhold til rapporten

Appendix 6: Code standards

The purpose of this document is to assert quality of source code through formalizing

standards for the group to follow when writing code.

General guidelines

● Use code formatting to keep code consistent. Use 4 spaces (one tab).

● No uncommented code.

● No unused code. Remove code that serves no functionality to the final product.

Variables and Classes (Components)

● Classes, Interfaces and Components

○ Use Descriptive nouns for naming.

○ Mixed casing, starting with Capitalization of the first letter. Followed by

Camelcasing (e.g., AdminPanelController).

○ Interfaces should start with a capitalized I to signy to the reader that it is an

interface. (e.g., ImyInterface { name: string })

● Variable

○ Use Descriptive nouns for naming

○ CamelCasing. (e.g., foreningsNummer)

○ No use of one letter variables. Except for loops. (e.g., int x = 0;)

○ Avoid redundant variables.

● Functions and Methods

78

○ Use Descriptive naming for what the method does. (e.g., sumIncome())

○ Each method should be responsible for one action.

Code structure

● Frontend

○ All components are placed in a folder with the same naming, with an adhering

types file.

■ The type file must include the components name and “types” suffix.

○ All components should have an interface declaring prop types.

○ Utility functions and methods are placed in the utility folder.

○ Tests are structured with a respective folder for the component/method being

tested.

● Backend

○ All classes are placed in accordance with the Repository pattern.

■ Repository classes are to be placed in the repository folder.

■ Domain objects are to placed in repositories´ subfolder domain

■ Controller classes are to be placed in rests´ subfolder controllers.

■ Service classes are to be placed in the services folder.

■ Data transfer objects (dto) are to be placed in rests´ subfolder dto.

■ Utility classes are placed in utilities.

■ Security classes are placed in security.

○ Tests

■ Unit tests follow the same structure as classes.

■ Integration tests are placed in the folder integration.

○ Migration files

■ are placed in the migration sub directory under resources.

■ Migration files are named: Vnumber_date/time_ table/change.sql

● E.g., V3_29041911_alter_table_lokalforening.sql

79

Appendix 7: Git Procedures

80

81

Appendix 8: Structuring of component interfaces.

Here is an example for one of our React components interfaces. It shows the function

components arguments names and types making it easier for the team to know what the

required arguments for this component.

Here is the interface implemented into the function component.

82

Appendix 9: Tailwind config file and example

83

Appendix 10 - Azure DevOps

84

85

86

Appendix 11 - Test examples

Frontend:

Backend:

87

