
 0 

 

 
 

 

 

Tittel: K14: Digitalizing Receptionist Services 

 

Emnekode IS-304 

Emnenavn Bacheloroppgave i informasjonssystemer 

Emneansvarlig: Hallgeir Nilsen 

Veileder Devendra Bahadur Thapa 

Oppdragsgiver: Knowit Sør 

 

Studenter:  

Etternavn Fornavn 

Fredriksen Sindre-Nicolai Barvik 

Glosli Henrik 

Hurum Jenny 

Meisingset Stian 

Solvang Rikke 

Sørensen Sven 

 

 

Jeg/vi bekrefter at vi ikke siterer eller på annen måte bruker  

andres arbeider uten at dette er oppgitt, og at alle referanser er 

oppgitt i litteraturlisten. 

JA  

Kan besvarelsen brukes til undervisningsformål? JA  

Vi bekrefter at alle i gruppa har bidratt til besvarelsen. JA  

 
  



 1 

  



 2 

 

Preface 

This report contains the project of group 17 in the course IS-304, Bachelor Thesis in 

Information Systems. This report intends to demonstrate the choices we have made and why 

and take advantage of the knowledge and skills acquired throughout the degree. 

We are using relevant research to supplement our report and utilizing methods and previous 

experiences obtained in other courses to support our choices. This report will demonstrate 

the use of tools, methods, and technologies for project management and development. 

We would like to express our gratitude to KnowIt Sør and the K14 representatives for their 

confidence in us and for allowing us to gain this experience. First and foremost, thank you to 

Trym Staurheim for aiding us throughout the process and putting up with our endless 

questions. Furthermore, we would like to thank our course coordinator, Hallgeir Nilsen, and 

supervisor, Professor Devendra Bahadur Thapa, for their guidance and assistance. Lastly, 

we would like to thank each group member for their determination, constant motivation, and 

outstanding collaboration throughout a challenging semester. 

Kristiansand 

16.05.22 

 

 

  



 3 

Abstract 

This report documents the process behind the development of a mobile application for iOS 

and Android. It is written for Knowit Sør, for which we have developed an application for 

tenants and guests of the future commercial building in Kristiansand, K14. The application 

seeks to streamline commonly understood and established services offered in a reception 

environment or by receptionists. 

 

As the project contained few to no requirements, we have used a methodology that facilitates 

responding to change. The methodology applied is subject to The Agile Manifestoôs four 

basic principles, combined with a selection of Scrum artifacts. We have achieved progress 

without compromising requirements through short iterations, definite sub-goals, and frequent 

Sprint Reviews. To ensure product quality, we mapped the end-userôs needs by performing 

substantial data collection. In pursuance of a high-quality system, we have included a risk 

matrix, conventions and guidelines for code development and project execution, and regular 

testing. 

 

In the analysis, we covered interviews, analysis of the clientôs website, and existing off-the-

shelf solutions. Our findings resulted in mapping the domain. Thereafter, we applied methods 

such as sketching and mockups, and David Benyonôs design principles, resulting in the 

current user interface design. The programming language React Native, facilitated an 

efficient development process, while Azure DevOps increased overall project control. 

 

The team aimed to complete the highest prioritized system requirements. Challenges 

involving prioritizing functionality versus design and sub-par pull request reviews left us with 

a somewhat troubling development phase. Regardless of the challenges, the process 

resulted in a cross-platform compatible application, including functionality like viewing, 

registering, and updating events and appointments. Even though some requirements were 

incomplete, we are satisfied with the result and the learning outcomes we have attained. 

 

A walkthrough of the application can be viewed here. 

  

  

https://youtu.be/pueG8N40WFM


 4 

Table of Contents 

1   Introduction 7 

1.1 Presentation of the Team 8 

1.2 Presentation of the Product Owner and Client 8 

1.3 Presentation of the Project 9 

1.4 Project Issue 10 

1.5 Project Goals and Ambitions 10 

1.6 Ethical Considerations 10 

2 Project Management 12 

2.1 Methodology 12 

2.2 Definition of Quality 13 

2.3 Process Quality 14 

2.4 Product Quality 15 

3 Analysis 16 

3.1 Data Collection 16 

3.2 System Requirements 17 

3.3 Problem Domain 19 

3.4 Application Domain 20 

4 Design 21 

4.1 Architectural Design 21 

4.2 User Interface Design 22 

5 Technology and Tools 24 

5.1 Azure DevOps 24 

5.2 Frontend 25 

5.3 Backend 27 

6 Project Execution 29 



 5 

6.1 Project Start 29 

6.2 Data Collection and Analysis 32 

6.3 Ideation and Design 35 

6.4 Development 39 

6.5 Project close 41 

7 The Final Product 42 

7.1 Architecture and Backend 42 

7.2 Functionality 43 

7.3 Testing 44 

7.4 Facilitating Further Development 44 

8 Reflection 46 

8.1 Process and Methods 46 

8.2 Product Decisions 51 

9 Team Evaluation 54 

10 Conclusion 55 

Bibliography 56 

Appendix 59 

 

 

  



 6 

List of Tables 

Table 1) Overview of the individual team members of the project 8 

Table 2) Overview of associates and involved representatives in the project 9 

 

List of Figures 
Figure 1) Illustration of the chosen methodology 13 
Figure 2) FACTOR model 18 
Figure 3) Illustration of the class diagram created 20 
Figure 4) The architectural design of the application 22 
Figure 5) Revised Gantt Chart 30 
Figure 6) Brainstorming session 31 
Figure 7) Similarities in the sketches 36 
Figure 8) The final sketch 37 
Figure 9) Backend architecture 42 
 

List of Appendices 
Appendix 1: Potential Development Areas Identified 59 
Appendix 2: The Learning Outcomes of The Bachelor Course 60 
Appendix 3: Risk Matrix 61 
Appendix 4: Rich Picture 61 
Appendix 5: Event Table 62 
Appendix 6: State chart diagram for Create New Event 62 
Appendix 7: State chart diagram for Change Event 63 
Appendix 8: State chart diagram for Event Invitation 64 
Appendix 9: State chart diagram for Notification of Arrival 65 
Appendix 10: UML Class Diagram 66 
Appendix 11: David Benyon´s 12 Design Principles 67 
Appendix 12: Azure Burndown Sheet 68 
Appendix 13: Team Contract 69 
Appendix 14: Interview Guide 71 
Appendix 15: Compiled Interview Guide 72 
Appendix 16: Must-Have User Stories 74 
Appendix 17: Color Palette for the Design 75 
Appendix 18: Aaron Marcus´ Color Conventions 75 
Appendix 19: Landing Page 76 
Appendix 20: K14 building page 76 
Appendix 21: Calendar page 77 
Appendix 22: Contact personnel page 77 
Appendix 23: K14 information page 78 
 

  

file://///Users/jennyhurum/Downloads/2.0-FERDIG-stian-fix.docx%23_Toc103579191


 7 

1   Introduction 
 

This report is written as a part of the course IS-304, Bachelor Thesis in Information Systems. 

The bachelor thesis aims to provide students with an opportunity to demonstrate acquired 

knowledge and competence by engaging in a project involving information systems in a real 

setting (University of Agder, 2021). This process also includes planning, estimating, 

developing, testing, reviewing, improving, and thoroughly documenting the project. The 

course emphasizes quality management, both in the process and the product, by adopting 

applicable methods and techniques. Further, it accentuates the importance of iteratively 

evaluating the consequences and various outcomes of the process. Therefore, the project is 

of practical interest as it is desirable to measure our knowledge and abilities in a real setting. 

 

The course requires collaboration with an external actor. We have partnered with Knowit Sør 

for a project concerning the development of an application, intended to aid tenants and 

visitors of the future commercial building, K14. This building will be a vibrant innovation 

center and a natural meeting point for the future business community in the entire region 

(K14, 2021). The project is scoped into a single module, hereby the digital reception of the 

application. Knowit Sør is the project owner, and representatives from K14 have formally 

functioned as the client.  

While this chapter and its following sections will introduce the team, the parties involved in 

the process, and the thesis project, chapter two presents how the project has been 

managed. The methods used to conduct the analysis are then described in chapter three. 

Chapter four presents the architectural and interface design, followed by chapter five, which 

presents the technology and tools used. The execution of the project is then described in 

chapter six before presenting the final product in chapter seven, after which the results will 

be rigorously reflected upon in chapter eight. Thereafter, a statement from the team 

regarding the process is presented. Lastly, chapter ten outlines the conclusion and 

recognizes both limitations to the project and recommendations for further development. 

 

  



 8 

1.1 Presentation of the Team 

The team consists of six students in the sixth semester at the bachelor's program IT and 

Information Systems at the University of Agder and was established at the start of the fifth 

semester. As we believe a diverse team is crucial to creating ideas that can prosper into 

valuable solutions, our team embraces a wide range of individual interest areas, knowledge, 

and backgrounds (Table 1). This has resulted in a collectively broad foundation of 

knowledge. 

 

Name Main Responsibility Other Responsibilities 

Jenny Project management, design, 

and documentation 

Analytics, insight work, communication 

with product owner 

Rikke Design and frontend 

development 

Analytics, insight work, database 

design, communication with the client 

Sindre  Frontend development and 

project management 

Analytics, database design, insight 

work 

Henrik Database design and 

documentation 

Analytics, insight work 

Sven  Full-stack development, testing Analytics, insight work, transcribing 

Stian  Backend development Analytics, insight work, database 

design, testing 

Table 1) Overview of the individual team members of the project 

 

1.2 Presentation of the Product Owner and Client 

Knowit AB is a Swedish IT consulting company established in 1990 that supports companies 

and organizations in digital transformation (Knowit, n.d.). Currently, the company is 

represented in Norway, Sweden, Finland, Denmark, Estonia, and Russia, with Norway being 

the second-largest expansion. Knowit AS in Norway is a wholly owned subsidiary of Knowit 

AB and has 15 subsidiaries, including Knowit Objectnet AS, Knowit Decision Oslo AS, and 

Knowit Reaktor AS. 

 



 9 

Knowit Sør was originally our client, and the product owner was K14, represented by Daland 

Eiendom, BRG Utvikling, Næringsmegleren Sædberg & Hodne, and J. B Ugland Eiendom. 

However, due to the lack of communication with the representatives from K14, Knowit 

entered the role as product owner to give us continuous feedback about requirements. A 

table presenting an overview of associates and involved representatives related to the 

project and its client is presented below in Table 2. 

 

Name Professional Role Association Project Role 

Morten Rosenberg Marketing and sales 

manager 

Knowit Sør Project client 

supervisor 

Trym Staurheim IT-consultant Knowit Sør Project mentor and 

product owner 

Geir Morten Hagen Senior consultant Knowit Sør Architect mentor and 

product owner 

Håvard Bjorå Business and project 

developer 

J. B. Ugland Client 

Unni Mesel CEO Næringsmegleren 

Sædberg & Hodne 

Client 

 

Table 2) Overview of associates and involved representatives in the project 

 

1.3 Presentation of the Project 

Before starting the project, Knowit Sør had contacted representatives from real estate agent 

Næringsmegleren Sædberg & Hodne and real estate developer J.B Ugland Eiendom 

regarding a potential collaboration related to K14. As this commercial building focuses on 

being contemporary and providing sustainable solutions to its tenants and visitors, they 

sought a mobile application that would digitalize and facilitate processes in the building. Such 

processes include booking meeting rooms, coworking areas, canteen arrangement, food 

ordering, access control, digital receptionist, and more. Please see Appendix 1 for all 

possible expansions and probable development areas that have been identified. 

 

Our project has been scoped to focus on the initial module of the system, hereby the digital 

receptionist. It also includes the landing page and access to the application, which involves 



 10 

registration and login. The main goal of the system is to provide a minimum viable product 

(MVP), fulfilling the following criteria: 

 

ǒ The application needs a layout that accommodates the various services and 

amenities available to tenants and their employees and guests registered in the app. 

ǒ The application must support both guests and regular user accounts. 

ǒ The application needs to support the fundamental functionality of average users, such 

as booking meetings, notifying arrival, viewing amenities and services, viewing 

building information, and contacting the receptionist. 

 

This project will work as a foundation for the initial system, as it is planned to be further 

developed and expanded upon. 

 

1.4 Project Issue 

The issue that has been explored and attempted to solve, is the need for a mobile application 

that accommodates tenants and visitors. The application needs to include information about 

the facility and enable users to contact the receptionist. Both tenants and visitors need to 

register as users to benefit from the application; however, the application will provide varying 

content, depending on user type. 

 

1.5 Project Goals and Ambitions 

The overarching goal of the project is to fulfill the learning outcomes defined in the bachelorôs 

course, as these learning outcomes align with both the product ownerôs and our individual 

goals. (Appendix 2). The individual goals involve using established methods and techniques 

together with the knowledge acquired through the degree to prove our ability to carry out an 

IT/ IS project. The product ownerôs goal is for the team to focus on the process rather than 

creating a completed product, enabling us to better understand and apply the acquired 

knowledge of the system development process into future projects. 

 

1.6 Ethical Considerations 

Various ethical considerations have been made as part of the development process. These 

were mainly regarding privacy and universal design principles. Early in the process, the 

product owner stated that it would be ideal for the application to track and recognize users, 

either via facial recognition or geo-tracking. This would enable the application to tailor 

content to each user. However, such functionality should be carefully considered before 



 11 

being implemented, as both technologies revolve around gathering and processing large 

amounts of detailed personal data. 

When creating an application intended for public use, regulations and rules regarding 

universal design need to be complied with. Even though most team members have 

completed a course in universal design and are familiar with its importance and core 

concepts, it has not been prioritized. The team has instead decided to focus on designing for 

user experience. Consequently, the argument can be made that multiple user groups are 

indeliberately excluded from using the application. 

As this project is developed by a group of students still undergoing education, detailed 

knowledge about, and the handling of, privacy and universal design issues should not be 

expected. Had this been a project in a non-educational setting, it is possible that an off-the-

shelf solution would have been used, possibly fitted to the specific client's needs. Therefore, 

it is likely that the considerations regarding privacy, design, and legal compliance would have 

been solved. 

  



 12 

2 Project Management 

This chapter presents project management in terms of methodology and tools to facilitate 

various aspects of the management process. Additionally, elaborating on quality assurance 

in the project. The chapter is divided into three subchapters to best demonstrate the various 

elements mentioned above. The first subchapter presents our definition of quality in a 

development project. The second chapter presents process quality, closely tied to product 

management and methodology, management tools, technical skills as well as test coverage. 

The third subchapter surrounds product quality, which emphasizes how product 

management, test coverage, continuous feedback and development, reviews, backlog 

prioritization, and acceptance criteria have contributed to the quality of the product.  

 

2.1 Methodology 

An agile methodology was chosen and adapted to the needs of the project and team to 

ensure project control and quality. Adopting an agile methodology was also a requirement 

from the product owner. The chosen methodology is based on The Agile Manifestoôs four 

basic principles, combined with a selection of Scrum artifacts that have proven useful on 

previous occasions, as shown in Figure 1 (The Agile Manifesto, 2001). 

 

The K14 representatives were unsure of how they wanted to advance with the project; 

therefore, we considered it appropriate to use an iterative method. The chosen development 

method contributes to more frequent deliveries to the customer as well as the opportunity to 

receive feedback in each iteration (Alshamrani & Bahattab, 2015, p. 108). In addition, an 

iterative approach allows for continuous adaptation of requirements and other project 

adjustments Similar to other agile methodologies, Scrum manages most system 

development as a controlled black box, thereby managing the project as if it is well-defined, 

even if additional requirements are expected (Sutherland, 2021, p. 55). This fits well with the 

project as change and expansion throughout the development life cycle are expected. Scrum 

provides the opportunity to learn from each incremental delivery, resulting in reasonable 

revisions for the next sprint (Alshamrani & Bahattab, 2015, p. 109). Furthermore, we 

established that the framework Extreme Programming (XP) may become relevant if time 

becomes insufficient. Teams operating XP deliver software with fewer errors, faster, and 

more adaptability (Shrivastava, Jaggi, Katoch, Gupta, & Gupta, 2021, p. 10). 

  



 13 

 

Figure 1) Illustration of the chosen methodology 

 

Supported by the Agile Manifesto for software development, in combination with selected 

Scrum artifacts that substantiate principles from the Agile Manifesto, we can better adapt to 

continuous changes if necessary. As a consequence of utilizing Scrum in numerous prior 

development projects, we have found it appropriate to use selected Scrum artifacts that 

endorse project control and quality. The artifacts include Sprint Planning, Daily Standup, 

Internal Review with Code Review, Sprint Review, and Sprint Retrospective. Furthermore, 

we would like to emphasize the importance of Sprint Planning to minimize future challenges, 

as several challenges have been a direct or indirect consequence of poor planning based on 

previous experiences. An internal review will assist the team with a comprehensive overview 

of completed work and will result in a product increment if it is of usable condition and meets 

the teamôs requirements for Definition of Done (DoD). DoD is defined as an agreed set of 

acceptance criteria for something to be considered accomplished (ProductPlan, 2021). In our 

case, the acceptance criteria of each user story will signify completion or to which degree the 

DoD has been fulfilled. Towards the end of the sprints, a Sprint Review with necessary 

stakeholders and a Sprint Retrospective is held for further review and feedback, with the 

intent of preventing challenges and improving work for upcoming sprints. 

 

2.2 Definition of Quality 

It can be challenging to provide a concrete definition of what quality entails in a development 

project. Every project is different and consists of teams with diverse attributes, individually 

applying their skills to achieve a common project goal. The definition of quality may therefore 

vary reliant on the dependencies of the project. To ensure quality in software development, 



 14 

we have deemed it appropriate to separate quality into the process- and product quality. We 

believe an essential aspect is distinguishing them, as high-quality products usually result 

from high process quality (Münch, Armbrust, Kowalczyk, & Soto, 2012, p. 7). 

 

2.3 Process Quality 

To ensure process quality, a combination of established methodologies, technologies, and 

frameworks needs to be present. However, we believe that there is no such thing as a 

universal methodology, rather that the methodology should be based on relevant factors and 

tailored to fit the team and project alike. By incorporating a methodology and artifacts that 

benefit the teamôs qualities and skills, we can exploit the benefits of the chosen methodology.  

Working with agile software development has allowed us to work iteratively and respond to 

changes and unforeseen problems accordingly. The artifacts selected can supplement the 

principles behind The Agile Manifesto such as: ñWelcome changing requirements, even late 

in development. Agile processes harness change for the customerôs competitive advantage.ò 

(The Agile Manifesto, 2001). By utilizing Scrum elements such as daily standup and Sprint 

Review, we are able to communicate progress and problems continuously throughout the 

project lifecycle. This is especially useful as we were tasked with initiating the development 

of the application and had little information in the first place. Therefore, a methodology 

facilitating continuous adaptation to change, and feedback aids the team in ensuring quality 

in its entirety. 

 

The chosen methodology has further allowed us to adjust sprint lengths iteratively. Initially, 

the sprints were three weeks long to accommodate the analysis and design phase of the 

project. When the development phase started, we realized that it would be advantageous to 

shorten the length of the sprints to two weeks. Consequently, we were able to focus on more 

frequent deliveries, with the intent of more periodic feedback from the product owner, 

ensuring the quality of the product. Another way to improve process quality is to do a risk 

assessment of the project. By establishing potential risks early in the process, the team can 

identify, minimize, or hopefully eliminate the risks, and help us optimize resources and plan 

around the potential risk. The risk matrix can be found in Appendix 3.  

 

It is important to utilize tools and technologies that support management control to ensure 

process quality further. Azure DevOps allows the team to keep track of certain Scrum 

elements such as product- and Sprint Backlog, ensuring that everyone is up to date with 

current tasks and progress. Azure DevOps also allows for collaboration on code 

development, build, and deployment of the product (Microsoft, 2022). In addition to code 



 15 

development, Azure offers Git-based version control, simplifying the process of reviewing 

and complying with changes in development. We can review code changes by creating pull 

requests, making it an important measure to maintain quality in the development process.  

 

Time is often a critical factor in software development projects. It is important not to let 

insufficient time compromise the quality of the product; therefore, XP can be advantageous in 

such circumstances. Furthermore, it was deemed appropriate to incorporate pair 

programming into our development methodology, although it was not utilized in the traditional 

sense of two developers working on the same workstation. Instead, two developers had 

continuous communication working on different problem areas, using communication 

channels such as Discord to share and review code, diminishing the threshold for 

consecutive communication. Despite the traditional pair programming roles of ñdriverò and 

ñnavigatorò not being present, the communication between developers promotes pair 

programming principles such as facilitating learning, efficiency, sharing, and improved 

resiliency to interruptions (Agile Alliance, 2022). 

 

2.4 Product Quality 

The Agile Manifesto expresses the importance of working software as a primary measure of 

progress, as well as delivering working software frequently. By having frequent reviews 

involving the product owner, we can make sure that our vision of the product corresponds.  

Considering the lack of distinct requirements leading to an unclear definition of how quality 

was perceived by the client, we concluded that product quality is defined through our data 

collection and analysis phase, in which the requirements are identified. Performing 

substantial data collection from the customers ensured that the product was developed to fit 

the needs of the end-user, consequently, making the product of higher quality. Further, it is 

desirable to let the customers be a part of several processes in the project life cycle, which is 

further substantiated by Mantri, Nandi, Kumar & Kumar (2011), stating that software quality is 

a solution to perform in accordance with the customer specifications. The customer is the 

end-user; therefore, the processes of software development should revolve around the 

approval of customer satisfaction.  

 

  



 16 

3 Analysis 

This chapter explains the analysis conducted to retrieve relevant information and introduces 

the methods that have contributed to the project. The upcoming subchapters will present an 

overarching designation of the methods and techniques; hereby, data collection, system 

requirements, problem domain, and application domain. Each subchapter consists of 

subsections elaborating on the methods or techniques relevant to the given subchapter. 

 

3.1 Data Collection 

To comply with the project issue, it was necessary to accumulate relevant data to establish a 

foundation and understanding. Data collection would also contribute to determining the target 

group, how the system will be used, and the system requirements. It would also be 

advantageous in identifying fundamental functionality. There are various ways of collecting 

data, such as surveys and interviews. For this project, both primary and secondary data 

collection were evaluated as necessary to create an adequate information basis. Primary 

data is collected by the researcher to provide answers to a clearly defined and current 

problem and collected directly from primary sources such as interviews. Secondary data is 

existing data that researchers use to enrich their research projects (Sundbye & Nisted, 

2017); (Halvorsen, 2014, p. 114). The various ways in which the data have been collected 

are presented below:  

¶ Semi-structured interviews (Primary data)  

¶ Examination of K14ôs website (Secondary data) 

¶ Assessing similar solutions (Secondary data) 

 

3.1.1 Semi-Structured Interviews 

A method enabling flexible and extensive information-gathering was required, as we were 

faced with sourcing most of the data for the project. Therefore, semi-structured interviews 

were chosen, as the method allows us to use prepared questions, enabling the team to 

collect reliable data, compare the findings, and achieve an in-depth understanding (Benyon, 

2019, p. 152). Additionally, encouraging both the interviewee and the interviewer to pose 

follow-up questions and discuss or explore relevant topics should they arise, possibly leading 

to the disclosure of otherwise unexpected opinions or feelings. This improves the basis of 

information to be used when assembling the system requirements, reinforcing the foundation 

of a user-centered application design. 

 



 17 

3.1.2 Examination of K14-Webiste 

Besides collecting primary data, it is helpful to examine existing secondary data sources. The 

website of K14 includes information about the building, the initiators behind the project, a 

prospect, and a gallery. In other words, it displays their identity and vision. The prospect is 

comprehensive and provides information regarding K14ôs environmental and sustainable 

focus, modern design, and potential users. Examining the website helped determine the 

color palette for the design, the overall feel, the targeted audience, and the vision of the 

building. 

 

3.1.3 Similar Existing Applications 

In addition to conducting interviews and examining the K14 website, it was also interesting to 

investigate similar applications, both in the Norwegian and international markets. Looking 

into similar apps helped the team understand the complexity and scope of such an app and 

what it entails. The discovery proved highly relevant as it demonstrates how such apps are 

used in daily life. By comparing available apps, we can exploit existing solutions by using the 

entirety or parts of the apps and look for ways to accommodate unfulfilled requirements, 

possibly reducing the total cost of development. Additionally, probing these apps contributed 

to the ideation process by enabling the team to envisage the application from a userôs 

perspective, thus facilitating the creation of the interview guide. 

 

3.2 System Requirements 

The following chapters will describe the methods used to substantiate system requirements, 

hereunder, an explanation of why we chose to include these methods in the project: user 

stories, MoSCoW prioritization, and a system definition utilizing the FACTOR criteria. 

 

3.2.1 User Stories and Prioritization 

A user story is defined as a description of functionality that will be valuable to either a user or 

purchaser of a system or software, which was the incentive for developing our user stories  

(Cohn, 2004, p. 4). We based them on the interview respondents and the clientôs 

requirements, as they are the future users of our system. The usage of user stories is 

beneficial to our project as it facilitates comprehensible communication of system 

requirements between stakeholders and developers. Further, it fits well with an agile 

development framework as changes in requirements are expected. The user storiesô 

associated acceptance criteria provide a foundation for determining the completeness of a 

story, which further facilitates quality control in our project. 



 18 

To determine the importance of each user story, prioritization is imperative. We chose the 

MoSCoW method for prioritization, which is a simple way to sort user stories into priority 

order (Waters, 2009). MoSCoW is an acronym, standing for Must have, Should have, Could 

have, and Want to have. We chose this method based on past experiences, knowledge 

about the method, and that it is, just as with user stories, comprehensible to stakeholders. In 

addition, we can represent a minimum viable product as must-haves, to recognize which 

user stories are required to be completed before we can launch the system. MoSCoW also 

fits an agile development framework, as we can easily change a user storyôs MoSCoW 

prioritization according to stakeholdersô needs. 

 

3.2.2 System Definition Using FACTOR 

To provide a simple overview of the system to be developed, a system definition was created 

by utilizing the FACTOR criteria. FACTOR is used to describe the most fundamental 

decisions involved in creating a sound computerized solution (Mathiassen, Munk-Madsen, 

Nielsen, & Stage, 2018, p. 24). FACTOR supports us in developing the system definition, by 

providing criteria to ensure a satisfactory system definition. Figure 2 shows the process of 

fulfilling the criteria in the system definition. 

 

Figure 2) FACTOR model 



 19 

  

A system definition should be a concise description of the system expressed in natural 

language (Mathiassen, Munk-Madsen, Nielsen, & Stage, 2018, p. 24). Our system definition 

is as follows: 

ñThe initial module for the system to be developed and later expanded upon is a mobile 

application for iOS and Android using React Native to ensure cross-platform compatibility. It 

seeks to streamline commonly understood and established services offered in a reception 

environment or by receptionists. Namely, users of the system will be able to view, register 

and update events, appointments, and a broad range of information regarding different 

aspects and entities of the facility and immediate vicinity. Hierarchical roles determine how, 

or if at all, a user might be permitted to interact with certain functions within the system. An 

employee can create, delete, and edit meetings or appointments, whereas guests are limited 

to viewing, attending, or declining said appointments or meetings.ò 

 

3.3 Problem Domain 

A problem domain analysis is about figuring out what information the system manages 

(Mathiassen, Munk-Madsen, Nielsen, & Stage, 2018, p. 47). More specifically, the 

information contains the classes, objects, and behavior from reality and how they correlate 

with each other. The various methods that have contributed to the process of assessing the 

problem domain are rich picture, event table, and class diagram. 

A rich picture is an informal drawing that presents the illustratorôs understanding of a 

situation.ò (Mathiassen, Munk-Madsen, Nielsen, & Stage, 2018, p. 26). Based on previous 

experiences, mapping the actors and classes and how they are related early in the process, 

is a way of gaining an overview of the system and what it will manage. Therefore, a rich 

picture was helpful to gain a collective understanding of how the system would interact with 

each of its components and supports the foundation of an event table (Appendix 4).  

We created an event table containing selected classes, and their related events, aiding us in 

determining how actors interact with the system (Appendix 5). An event table contains 

selected classes presented in the rich picture and related events (Mathiassen, Munk-

Madsen, Nielsen, & Stage, 2018, p. 51). Note that this event table does not include classes 

and events of the whole system, but the most important in correlation to our scope.  



 20 

The rich picture and event table resulted in a class diagram. The diagram contributed to an 

overview of the various classes in the problem domain, which facilitated the object-oriented 

system development (Figure 3). 

 

Figure 3) Illustration of the class diagram created 

 

3.4 Application Domain 

After exploring the problem domain, we analyzed the application domain. An application 

domain analysis aims to define requirements for functions and the interface (Mathiassen, 

Munk-Madsen, Nielsen, & Stage, 2018, p. 117). By analyzing the application domain, we can 

model requirements and how the system interacts with users, enabling us to get a holistic 

view of the system to be developed. The various methods that have contributed to assessing 

the application domain are state chart diagrams, UML class diagrams, and navigation 

diagrams. 

To better our understanding and insight into how users interact with some parts of the 

system, we decided to use state chart diagrams as these diagrams define the different states 

of the interaction and the different ways the system or actor can change that state 

(Mathiassen, Munk-Madsen, Nielsen, & Stage, 2018, p. 129). Therefore, key events 

regarding the creation and general interaction with events were mapped through state charts, 

as we needed additional insight into the flow of this part of the system. By mapping event 

creation (Appendix 6), change event (Appendix 7), event invitation (Appendix 8), and 

notifying arrival (Appendix 9), we achieved a better understanding of the system flow and 

user interactions required to complete each task. Additionally, aiding us in modeling user 



 21 

stories, as acceptance criteria, and state chart diagrams are comparable since they both 

define the steps required to complete a user story. However, the acceptance criteria have a 

technical approach, while the state charts focus on the user journey. 

A UML class diagram allows modeling the application domain as a static structure (Berardi, 

Calvanese, & De Giecomo, 2005, p. 73). Therefore, a UML class diagram was created to 

represent the various classes and their respective functions from a system point of view, to 

visualize how the system will be working (Appendix 7). The diagram created was based on 

the event table and the class diagram in chapter 4.3. 

To model the user interface, we created a navigation diagram that provides an overview of 

user-interface elements and their transitions (Mathiassen, Munk-Madsen, Nielsen, & Stage, 

2018, p. 161). The diagram shows the navigation from an a-to-z perspective, which proved 

valuable in mapping the navigation flow regarding access and functionality. This established 

a solid foundation for designing and implementing the system, and can be viewed in its 

entirety through this link. 

 

 
 

4 Design 

Simultaneous with the analysis, the team worked with designing the system architecture and 

user interface. Therefore, this chapter will address processes related to the architectural 

design, namely what was considered when determining which architecture to use and how 

this impacts the project. The chapter also addresses processes related to user interface 

design, such as sketching, design principlesô contribution to the design, and the mockups 

created. 

 

4.1 Architectural Design 

Establishing a software architecture is crucial when developing any software system, as it 

acts as the foundation and provides mechanisms for reasoning about core software quality 

requirements (Venters, et al., 2018, p. 174). It was necessary to establish data flow and 

component interaction in the initial design phase. We considered both a monolithic approach, 

in which all functionality is encapsulated into one single application, and a micro services-

oriented approach, in which a single application is developed as a suite of small services 

https://drive.google.com/file/d/16OGv4Gul8vWACddWq-szo0aOBlTtDX6S/view?usp=sharing


 22 

(Ponce, Márquez, & Astudillo, 2019, pp. 1-2). A micro-service-oriented approach was 

considered most suitable due to: limited development time, the customerôs desire for further 

development, and the architectural requirements derived from the analysis, such as 

scalability and maintainability. Microservices offer benefits appropriate to our project through 

modularization, maintainability, transferability, and increased availability due to the 

independence of services. These benefits are additionally enhanced by using the controller-

service-repository design pattern. This pattern clearly separates class responsibilities 

through the enforcement of object-oriented principles, such as high cohesion and low 

coupling. In combination, this allows us to scope the project into one manageable service, 

which can be incorporated with additional services at later stages (Figure 4). 

 

Figure 4) The architectural design of the application 

 

4.2 User Interface Design 

User interface design involves anticipating user requirements and ensuring the interface 

elements are understandable and easy to access (Usability.gov, n.d.). Therefore, the 

process involves ideation, sketching, and the evaluation of design and composition principles 

before arriving at the first draft mockups. 

4.2.1 Sketching 

The team decided to ideate and sketch shortly after meeting the client in the initial phase. 

Sketching is a simple way of exposing abstract ideas to the real world by demonstrating and 

visualizing simple functionality and was therefore crucial to the design process (Benyon, 

2019, p. 184). Due to the method´s simplicity, it is easy to distribute the products among the 



 23 

team members, contributing to further brainstorming. Additionally, the process of creating an 

interview guide became easier as each member conceptualized and visualized the 

application, leading to more deliberate questions. The design team used elements from each 

sketch to create a final sketch as the blueprint for the mockup. 

 

4.2.2 Design Principles 

Designing from a human-centered perspective involves numerous aspects. Design principles 

can guide the designer through the process and contribute to complying with the userôs 

needs (Benyon, 2019, p. 116). There are numerous design principles, and David Benyon 

proposes twelve design principles which can be seen in Appendix 8. All the principles 

interact in various ways, and it is challenging to design a solution accommodating each 

principle. Nonetheless, the principles will contribute to key features and elements of a solid 

design with a higher degree of usability. In this project, seven of Benyonôs twelve principles 

have been used actively in designing the mockup: 

 

¶ Consistency ¶ Familiarity ¶ Affordance 

¶ Navigation ¶ Feedback ¶ Style 

 ¶ Conviviality  

 

4.2.3 Mockups 

Mockups were chosen as the second design method to further visualize the ideas proposed 

through the sketches. This technique is typically a mid-to-high fidelity visualization of a 

product's appearance and displays basic functionality (Cao, Ellis, & Khachatryan, 2016, p. 9).  

A mockup distinguishes itself from sketches and techniques such as wireframes, as it adds 

visual richness through colors, typography, and iconography. It was necessary to adopt this 

technique to create a visual representation close to the final product. Having a realistic 

mockup provides the stakeholders with an accurate representation of the final product, 

enabling meaningful feedback and understanding of the customer's needs.  

 

Additionally, the creators of the mockups can easily showcase the design to the team, which 

can be advantageous for reviewing the design from a bigger perspective and communicating 

the design with the developers. The decision was made to make the mockups clickable to 

better illustrate the intended navigation to each page. By implementing this, the client would 

gain a better understanding of the intended functionality and navigation, as well as aid the 

team during the implementation of the application. 



 24 

5 Technology and Tools 

In this chapter, we will detail the systemôs tools, programming languages, and frameworks 

that contributed to developing the application and define why they were used.  

 

5.1 Azure DevOps 

The product owner required us to utilize Azure DevOps as a project management tool. 

DevOps makes it easy to keep track of product and Sprint Backlog by allowing group 

members to place tasks under new, active, resolved, or completed, relative to their progress. 

By using user stories and task cards, group members were able to write acceptance criteria 

and descriptions and attach relevant documentation to respective tasks. The use of Azure 

DevOps increased project control as it provided the group with an overview of remaining 

work, progress, and both assigned and unassigned tasks.  

 

Two functions of Azure DevOps consistently used throughout this project were the Sprint 

Retrospective plugin and burndown charts (Appendix 9). The retrospective plugin enabled 

the group to effectively assess and document the successes and downfalls of each sprint, 

thereby facilitating bringing changes and improvements into future sprints. Azure Burndown 

Charts proved to be an effective way of presenting the amount of completed and remaining 

work at the end of each sprint and indicating the progress throughout each sprint.  

 

In addition to facilitating certain Scrum artifacts, Azure DevOps offers the Git version control 

system. Version control is the practice of managing and tracking changes to software code 

over time, aiding development teams in working faster and smarter (Atlassian, n.d.). Using 

the version control offered by Azure, we could link code to their respective task, thereby 

increasing the group's control over completed features. To ensure the quality of the code 

being pushed into production, both a main and development branch were used. The 

development branch would be used for pushing code throughout sprints, whereas the main 

branch would be used to push all produced code at the end of each sprint. By doing this, we 

ensure that the main branch holds only quality, working code, ready for production. 

Therefore, the use of version control is one of the most important measures taken to 

maintain quality-assured code throughout the project.  

 

  



 25 

5.2 Frontend 

This chapter introduces the tools and technologies applied in the development of the 

frontend, namely React Native, TypeScript, Expo, Nativebase, OpenAPI, ESLint, and 

Prettier, briefly explaining why each technology or tool was used and how it impacted the 

project. 

 

5.2.1 Language and Framework 

React Native is a JavaScript framework for designing and creating mobile platform user 

interfaces and was required by Knowit (OôReilly, n.d.). React Native streamlines the project 

development experience by removing the need to learn and write separate languages for the 

iOS and Android platforms. Other than this, React Native offers the ability to maximize code 

re-usage through reusable components, thereby enforcing the principle of localizing change. 

Additionally, as it is a well-established framework, multiple widely used libraries are available, 

enabling us to take advantage of pre-tested components, thereby increasing the overall 

quality. Apart from providing us with more time to develop, the application of only one multi-

platform language simplifies the process as a whole and substantiates further development. 

TypeScript is a strict syntactical language that builds on JavaScript (TypeScript, n.d.). 

Through strict typing, type annotations, and type inference, TypeScript enhances the quality 

of the product by enabling us to write more readable, clean, and intuitive code. Said 

attributes are attained through strictly defining what a variable can hold, making it easier to 

interpret where individual variables are applied and what value it contains. By increasing data 

flow clarity through type transparency, Typescript provides better quality and control, 

ensuring that components and functions receive and pass on the correct data. This makes it 

easier for future developers to read and understand the code and save time with live 

exposure of bugs and errors.  

Expo is a framework for React Native providing a wide array of tools to get started and 

maintain the software during development (Expo, n.d.). It aids with and simplifies cross-

platform testing through its command-line interface, standardized setup, and ensuring 

external library compatibility. More specifically, it raises the quality and control of our project 

by applying automated setup and configuration, deployment, and testing on different 

platforms through its integrated development server, and automated verification of 

dependency compatibility. 

 



 26 

5.2.2 Tooling 

NativeBase is a component library used with React Native to develop UI across iOS, 

Android, and Web applications (NativeBase, n.d.). The library eases the process of 

implementing design elements, enabling us to save time and increase quality by using pre-

tested, ready-made components. Additionally, these components ensure control through a 

uniform design by supporting the creation and usage of default properties across pages. The 

application of a component library reduces the amount of code needed to establish a 

consistent UI across platforms and operating systems. Using NativeBase also removes the 

need for learning and writing copious amounts of CSS, possibly saving time, and allowing us 

to reallocate resources elsewhere.  

OpenAPI is the de-facto open-source format used to describe and document API design 

(SmartBear, n.d.). Combined with its TypeScript generator, OpenAPI provides a tool to 

automatically generate and maintain resources necessary to communicate with the API. 

Consequently, this removes the need for manual implementation of API calls, testing of 

models, and general API configuration. Further, it increases overall product quality and 

control through automation, thereby reducing the potential for human errors and enabling us 

to focus on implementing software design and functionality. 

ESLint performs continuous static code analysis, flagging errors, bugs, and suspicious 

constructs (ESLint, n.d.). Upholding a consistent programming style and maintaining code 

conventions demands less effort when combined with a code formatter like Prettier, which 

utilizes established configurations and rulesets. These tools enhance the overall readability, 

ensuring a uniform codebase, and reinforcing both quality and the foundation for further 

development. 

 

5.2.3 Testing 

Testing the frontend ensures that functionality still works as expected after changes to the 

code, also called regression testing. For this purpose, the tools Selenium and Cucumber 

have been used (Leung & White, 1989, p. 60). 

 

Selenium is a tool that automates the web browser and can be used for various purposes; 

however, we used it to automate acceptance tests that communicate with our user interface 

(Selenium, n.d.). Together with Selenium, the tool Cucumber has been used, which is a tool 

that supports Behavior Driven Development (BDD). BDD is the process of developing in a 



 27 

natural language, such as English or Norwegian (SmartBear, n.d.). This has been used as a 

way of creating automated acceptance tests written in natural language and ensures a 

common understanding between all parties involved in the project (Furia & Nanz, 2012, p. 

279).  

 

Using Cucumber did not only benefit the stakeholders of the project. It also made tests easier 

to read and understand, as reading extensive test cases written in plain code can be 

challenging to comprehend. Further, it made writing tests easier, as parts written in natural 

language could be reused to fit other test cases. Also, it potentially decreased the amount of 

boilerplate code and the time spent writing tests, giving more room for writing functionality. 

Additionally, Cucumber enables a 1:1 relationship between a test and a user storyôs 

acceptance criteria. 

 

 

5.3 Backend 

This chapter presents the technologies used in backend development, including the main 

programming language and development framework, different tools used to provide 

functionality, database and testing frameworks. 

 

5.3.1 Language and Framework 

The programming language used for backend development was Java with the Spring Boot 

web framework. Spring Boot makes it easy to create stand-alone, production-grade Spring 

based Applications that you can ñjust runò and is used by 4 in 10 Java developers (Spring, 

2022; Maple & Binstock, 2021). Using Spring Boot was a requirement from Knowit, which 

suited us well considering that several team members have experience with this from 

previous projects. 

For building the project we used Apache Maven which is a software project management and 

comprehension tool (Porter, van Zyl, & Lamy, n.d.). Maven is also responsible for handling 

our dependencies to external tools and libraries. 

 

  



 28 

5.3.2 Tooling 

We have used several external libraries and tools for developing the backend, such as: 

¶ JavaMail, a framework to build mail and messaging applications (Oracle, n.d). This 

allowed us to send emails to users for authenticating email addresses, resetting 

passwords and communicating with receptionists. 

¶ Spring Data JPA (JPA), SpringËs implementation of Java Persistence API which is ña 

specification that defines an API for object-relational mappings and for managing 

persistent objects.ò (Janssen et al., 2021). JPA simplifies querying the database and 

offers auto generation of Java entities mirroring the database tables. The usage of 

JPA has enhanced data integrity across the java application and the database, in 

addition to securing high quality code as the auto generated classes follow a 

predefined format. In combination this leads to more efficient development, and 

higher code quality. 

¶ Lombok, a java annotation library for reducing boilerplate-code (Project Lombok, n.d). 

Lombok streamlines the code implementation by allowing annotations to auto-

generate code for often used methods, which relieves developers from writing time-

consuming boilerplate-code.  

¶ JWT, an open, industry standard method for representing claims securely between 

two parties (auth0, n.d). Used for secure authorization of requests to the API. JWT is 

an encrypted token based on user credentials. By using this as authorization instead 

of username and password, it prevents ill-intentioned individuals from fetching this 

data. This is an important measure to maintain privacy and enforce confidentiality for 

users of the application. 

¶ Swagger, an API-tool created to foster API collaboration and standardization across 

multiple teams, in our case frontend and backend (SmartBear Software, n.d). 

Swagger provides API-documentation to applications utilizing the API, enabling 

standardized format of requests/responses between the API and the frontend.  

 

5.3.3 Database 

We have used the Microsoft SQL Server (MSSQL) database by request from Knowit, 

although, while developing, we used the H2 Database Engine (H2), which is an open-source 

Java Database Connectivity API (H2 database engine, n.d.). We configured H2 to use the 

same syntax as MSSQL, relieving us from rewriting the database schema. H2 offers an in-

memory database which relieves developers from running a separate instance of the 



 29 

database while developing. It also allows integration tests to be run in the build pipeline 

without connecting to an external testing database. Since the database is rebuilt from a 

shared script each time the application is run, we established a cohesive development 

environment, which removed the possibility of unsynchronized databases. A visualization of 

the ER-diagram can be found here. 

 

5.3.4 Testing 

For testing, we have used JUnit, a simple framework to write repeatable tests (JUnit, 2021). 

Knowit required a test coverage of at least 80% in the backend, and to ensure this, we used 

JaCoCo, a free Java code coverage library (EclEmma, 2022). JaCoCo delivers code 

coverage reports when tests are run, enabling us to see line-by-line which parts of the code 

had test coverage, additionally illustrating the test coverage percentage. 

 

6 Project Execution 

This chapter presents the execution of the project chronologically through five subchapters, 

hereby: project start, data collection and analysis, ideation and design, development, and 

project close. The chapter will give an in-depth review of the process, which involves 

reasoning for important decisions made.  

 

6.1 Project Start 

This chapter presents the starting point of the project, which means the first day of the team 

meeting and working together to start the first sprint. The chapter will first present the initial 

phase, a phase initiated prior to meeting Knowit, and the project issue. Further, the chapter 

presents the project kickoff and meeting the product owners. 

 

6.1.1 Preliminary Phase 

It was necessary to initiate the starting phase to establish provisions, clarify expectations, 

and create a team contract and an early project plan. Among the provisions were: 

ǒ Daily documentation of conducted work 

ǒ Adopting an agile framework with Scrum artifacts 

ǒ Conducting daily standup digitally or physically, without exceptions 

 

https://drive.google.com/file/d/1LJHjDK6LEHiWR17Iv78-unAE4rOcSdLY/view?usp=sharing


 30 

Additionally, the provisions emphasized equal workload distribution defining collective goals, 

ambitions, and guidelines to ensure a project of desired quality. Further, it was necessary to 

clarify each individualôs project expectations to establish a collective understanding and 

agreement to avoid potential problems, which served as the basis for the contract. Making a 

contract established an agreement between the team members and sets out the rights and 

obligations that must be complied with, which assisted in creating a productive workflow. The 

contract aimed to be realistic and specific by assessing work distribution, conflict 

management, communication platforms, deadlines, and decision making. The contract was 

created and agreed upon by each team member (Appendix 10).  

 

An early draft of the project plan was created and later replaced with a Gantt Chart before 

starting the first sprint (Figure 5). Despite creating the project plan draft prior to starting the 

project, there were a few discrepancies in the Gantt Chart. Proper planning provided an 

overview of the project, reducing biased decisions and emphasizing central elements such 

as the projectôs scope.  

 

 

Figure 5) Revised Gantt Chart 

 

6.1.2 Project Kickoff 

The project kickoff was set to January 7th. As we met the team from Knowit, they presented 

us with various cases for our bachelor project. K14 seemed like the most appealing and 

suitable case, as the team wanted a challenge that required each member's knowledge and 

abilities to be put to the test. Thereafter, the representatives from Knowit scheduled a 

meeting with representatives of K14 and prepared us by giving input on how to ask questions 

and keep the conversation flowing to retain relevant information. 

 



 31 

Within a week, the meeting with the client took place. The team had prepared questions and 

talked through the meeting with representatives from Knowit, encouraging us to act as IT 

consultants. Despite the client having a vision of the mobile application, there were no 

predefined requirements. Therefore, it was crucial to engage in the conversation and ask 

questions to ideate with the client to uncover vital information. However, the team had little 

experience with such situations, and one of the representatives of Knowit helped guide the 

meeting and retrieve information. The meeting overwhelmed the team with information and 

ambitious ideas, resulting in few clear lines. Through the meeting, two of the team members 

noted down key takeaways. They can be described as follows: The clientôs vision of the K14 

application is to be a one-stop-shop, meaning gathering all services, everyday tasks, and 

amenities that visitors and employees need in one app. While closing off the meeting, 

another was scheduled one week afterward for the team to present current understanding 

regarding the client´s vision and needs to determine the scope. 

 

After processing the meeting with the client, it was necessary to review the information to 

map and define the various categories and elements in the application and their relation to 

one another. Besides reviewing the information, it was necessary to investigate and 

brainstorm. The team came across a similar application in the Norwegian market by IZY.AS. 

This application presented similar functionality to what the client described but appeared to 

lack the necessary functionality and a user-friendly design. This process was carried out in 

plenary with the help of a chalkboard, as shown in Figure 6 below.  

 

Figure 6) Brainstorming session 

 
The activities mentioned above resulted in a list of questions for the client in the upcoming 

meeting. It was also decided to present the app IZY.AS, the functionality offered by the app, 



 32 

and its shortcomings, such as a digital receptionist. This was with the intent of getting 

feedback regarding application functionality and design. 

 

6.1.3 Determining the Scope 

The second meeting proved to be positive in determining the project scope. Initially, the client 

proposed ideas such as the app receptionist recognizing app users through GPS tracking 

and verifying access to restricted areas belonging to the various businesses through 

biometrics. However, such functionality requires extensive knowledge related to both 

legislation such as GDPR, and complex technology development. As the team does not 

possess such knowledge, it was not an alternative. The client also expressed a wish for the 

application to enable food ordering, a carpool and bike rental, functionality for parking, and 

more (Figure 6). Moreover, the client proposed numerous criteria to be fulfilled in order to 

produce an MVP, as proposed in chapter 1.3. 

 

Due to the project's time frame of four months, it was critical for the product owner, the client, 

and the team to establish a realistic scope. It would not be possible to create an app meeting 

all the visions of the client in four months. Therefore, the final product had to be made in a 

way that facilitates further development. Thus, the scope was set to create the app's 

foundation, including working functionality of what was described as the digital receptionist of 

the app. By defining the scope, it was possible to initiate the next phase of the project: data 

collection and analysis. 

 

 

6.2 Data Collection and Analysis 

This chapter presents the process related to the interviews conducted, involving the 

preparation, execution, and analysis of the findings. 

 

6.2.1 Preparing the Interview 

An important step in conducting a thorough interview is to prepare the interview accordingly, 

and therefore it was necessary to create an interview guide (Appendix 11). The interview 

guide was thoroughly assessed by critically evaluating each proposed question to ensure its 

purpose. Additionally, the team role-played as an informant and interviewer to test whether 

the interview guide provided sensible answers that would contribute to our analysis. Further 

on, the interview format was decided to be respondent-to-interviewer rather than a group 

interview, as group interviews require an additional effort of the informants regarding 



 33 

planning and scheduling. The interview involved three members of the team functioning as 

interviewer, observer, and transcriber. In selecting interview objects, the client offered to 

contact the various companies on behalf of the team. The client presented the situation and 

asked whether any potential tenants would like to be interviewed. Four companies agreed, 

and each company was contacted to determine formalities. By interviewing on the 

informants´ premises, comfort is ensured, and disturbances are avoided. 

 

6.2.2 Execution of the Interviews 

The interviews were conducted at different locations according to the intervieweeôs premise. 

When conducting the interview, the interviewer provided background information regarding 

the project and the purpose of the interview. Additionally, the interviewer provided 

information about the intervieweesô rights and privacy and assigned each with an ID. The ID 

would enable the team to track the respondentsô answers and remove them if desired.  

Several informants expressed difficulty in understanding various questions, which could be 

due to the complex concept of the project. In such circumstances, the interviewer would 

elaborate and explain the question differently with examples to clarify the question. However, 

the general impression indicated that the interviews were comprehensible and served their 

purpose. After conducting the interview, the respondent was thanked for their participation. 

Thereafter, the notes from each interview were rewritten accordingly and later compiled into 

a larger document using the layout of the interview guide (Appendix 12).  

In addition to interviewing future tenants, we were also able to interview a receptionist 

working in a commercial building, similar to K14. The interview was conducted in the same 

manner as presented above. By interviewing tenants and a receptionist, we were able to get 

a more nuanced understanding. 

6.2.3 Analyzing the Findings 

The compiled document was thereafter refined to only contain information relevant to our 

scope, to categorize and compare answers. Multiple answers could not be directly 

compared, as semi-structured interviews allow the interviewees and interviewer to explore 

the conversation beyond the predefined questions. However, some answers proved to have 

similarities to other intervieweesô opinions. Additionally, recurring themes and focus areas 

provided valuable insight into the usersô needs.  

 



 34 

6.2.4 Examination of K14´s Website 

The website of K14 was examined alongside conducting the interviews. Each team member 

thoroughly examined the website and its pages to retrieve relevant information to support our 

understanding. The website contained a prospect that proved to be highly relevant as it 

contained information about the concept of the building, in addition to presenting its target 

audience. Having a predefined target audience as a basis facilitated the ideation and design 

process. After examining the website, the team discussed the various elements and 

impressions in plenary, to collectively agree upon an understanding of K14 and its identity.  

 

6.2.5 Constructing and Prioritizing the User Stories 

By compiling data from the interviews, the K14 website analysis, the clientôs vision, and the 

product ownerôs specifications, we initiated the process of user story creation. By utilizing the 

format: As a ñwhoò, I want to ñwhatò, so that ñwhyò, we ensured that the user stories would be 

comprehensible and easy to communicate between stakeholders regardless of technical 

insight. Initially, the team discussed the data from the analysis to further our insights and 

establish a common understanding of user needs and requirements. Afterward, we worked 

through the data and requirements in unison, point by point, translating each requirement or 

user need into a user story. Additionally, every story received a set of acceptance criteria to 

be used in testing, detailing its conditions to be considered complete. To increase the quality 

and accuracy of the user stories, each member read through the user stories noting possible 

improvements or changes that we subsequently discussed and applied where necessary. 

The prioritization started with identifying user stories relevant to the projectôs scope, by using 

MoSCoW. Using the navigation diagram in combination with the user storiesô contents, we 

identified user story dependencies and pinpointed must-haves (Appendix 13). This resulted 

in a prioritized overview of the user stories and any technical or functional dependencies 

necessary to complete the MVP. 

 

6.2.6 Exploring the Domain 

Exploring the problem domain was done alongside constructing the user stories, starting with 

creating a rich picture. The relation between actors and objects was modeled to get a holistic 

overview of the problem domain. Thereafter, we analyzed which events would occur in the 

problem domain, visualizing it with an event table. Lastly, after gaining proper domain 

knowledge, a class diagram was developed to visualize classes and their relationship. We 

used specialization in some classes to illustrate the different inherited classes.  



 35 

 

Following the problem domain analysis, we started creating state chart diagrams to explore 

the application domain. The problem domain events inspired the events in the diagrams. The 

diagrams were developed in tandem with defining the acceptance criteria for the user stories, 

considering the diagrams contribute to visualizing the steps involved in a user story. 

Furthermore, a UML class diagram was created, which contained all the classes the system 

needed to consider from a programmatic perspective. Each class contained fields specifying 

the data types, and class methods specifying parameters and return values. Some classes 

were aggregated into superclasses due to numerous common attributes. This also applied to 

the classes Employee and Guest, which were aggregated into User. However, our 

implemented system did not utilize this aggregation as it was impractical from a database 

perspective. 

 

Lastly, a navigation diagram was created, supplementing the later developed mockups and 

creating a solid foundation for implementing the design, more specifically, implementation of 

page navigation and the authorizations required to access certain pages. The diagram also 

displays the number of clicks each page has from the index page, which was beneficial to 

keep track of a pageôs position in the hierarchy and keep the number of clicks to a minimum. 

 

 

6.3 Ideation and Design 

The ideation and design process was executed in parallel with the analysis, sketches being 

the first method. While half of the team was conducting the interviews, the design team made 

mockups for parts of the system that would remain unaffected by the data collection, such as 

the login and register page. The creation of the mockups continued concurrently with the 

analysis of the findings to incorporate elements in the compiled document. This resulted in 

the mockups being based on the must-haves. This subchapter first presents the process of 

creating the initial and final sketches, followed by a section elaborating on creating the 

mockups and design choices. 

 

6.3.1 Sketch 

Similar to general design practice, it was considered appropriate to outline different ideas, as 

it acts as a catalyst for the ideation process. Each team member outlined individual drafts 

based on our understanding of what the application would encompass. The purpose of 

individually visualizing the ideas was to optimize new ideas without compromising originality. 

This resulted in some of the contributors sketching for different pages than the rest of the 



 36 

team. However, this provided new ideas, which later proved helpful in the design process of 

the final sketch. Then, each sketch was presented to the team while explaining the design 

and interaction between the pages. Thereafter, the sketches were discussed in plenary to 

examine parallels, similarities, and unique elements, before deciding which elements to 

include in the final sketch.  

Despite a diverse selection of ideas, there were several similarities in the register, login, and 

landing page. In each sketch, the register and login page had a minimalistic design with 

generous space between its fields and buttons, leaving little room for excess text and 

distractions. The sketches of the landing page all resembled a dashboard in one way or 

another, with elements, buttons, and widgets presenting what the team perceived as key 

functionality at the time. Each sketch displayed functionality such as notifying arrival to a 

meeting, notifications, and an overview of upcoming events in the building. Additionally, most 

of the sketches presented a toolbar at the bottom with buttons for the profile page, calendar, 

services and amenities, and booking. Some of the similarities are highlighted below in Figure 

7. 

 

Figure 7) Similarities in the sketches 



 37 

Based on the proposed ideas, the team collectively decided 

on the main elements to be included in the final sketch. The 

design team then created a final sketch, compiling the 

various elements from each sketch and new elements that 

came to mind during the design process. This was done to 

create a thorough foundation that would cover the necessary 

pages. As sketching is a minimalistic method that does not 

include details, the design team sketched pages for: register 

and login, the landing page, available services, accepting 

meeting invitations, and information about the building. As 

Figure 8 shows, the final sketch included various elements 

that occurred in the majority of the initial sketches. However, 

the final sketch also includes a digital ID card. Despite the 

project's scope being enclosed to one module, emphasizing 

the digital receptionist, this choice was made as the client 

expressed a desire to incorporate access into the application 

seamlessly. This final sketch functioned as the foundation for 

the next step of the design process: creating mockups.  

 

6.3.2 Mockups 

Based on the final sketches and previous experiences with UI/UX design, the mockup was 

constructed through the product design platform UXPin. The design team was responsible 

for carrying out the design of the mockup. Despite having a final sketch with the desired 

design, it was convenient for both designers to create their own take of the final sketch. This 

is due to sketches being simplistic and merely a draft, leaving room for the design of the final 

sketch to be explored further. Initially we deemed it necessary to create mockups for key 

pages within our scope, such as registration, login, the landing page, the profile page, and 

the page displaying information about the building. However, as the project went by, it 

became clear that it was necessary to create additional mockups to cover all the must-have 

user stories. This included pages that enabled the users to actually contact the receptionist, 

make events and meetings, view the calendar, and view the amenities. Through the design 

process of the mockups, a set of design principles and precautions were adopted, in addition 

to a suitable design language.   

Figure 8) The final sketch 



 38 

As mentioned in chapter 4.2.1, seven of Benyonôs twelve principles were taken into account 

when designing the mockup, as shown below. To illustrate each principle, we will refer to the 

page number in the site map in UXpin, through this link.  

ǒ Consistency (Principle 2) - concerns consistent use of language and features, and 

consistent design with similar applications. An example of this is the consistent use of 

a specific font throughout the design, which will be further elaborated upon, in regard 

to design language (UXpin page 3.0) 

ǒ Familiarity (Principle 3) - concerns using language and symbols familiar to the 

intended audience. An example of this is the icon indicating the profile page (UXpin 

page 3.0). 

ǒ Affordance (Principle 4) - involves designing an element in a way that clarifies its 

purpose, establishing a correspondence between the visual design and its intended 

properties. An example of this is the buttons to create an event in the calendar by 

using a consistent shape with shadowing, a descriptive text, together with a logical 

placement and order at the bottom of the page (UXpin page 11.0). 

ǒ Navigation (Principle 5) - involves providing feedback that enables users to move 

around in the system through maps, directional signs, and information. An example of 

this is the possibility to always use the return-button which is located at the top left in 

every page except for the landing page (UXpin page 6.0). 

ǒ Feedback (Principle 7) - concerns rapid feedback from the system to the user to 

display the effect of their actions. An example of this is the pop-up displayed when a 

user creates an event, with a descriptive text and a figure symbolizing a check mark 

(UXpin page 11.2). 

ǒ Style (Principle 11) - involves a design to be stylish and attractive. This principle is 

elaborated thoroughly through the latter part of this subchapter regarding design 

language. 

ǒ Conviviality (Principle 12) - concerns interactive systems to be polite, friendly and 

generally pleasant. An example of this is when a person registers a user account, 

where the last step of this process presents a page with a polite and welcoming 

message (UXpin page 2.0). 

Further, we opted for a suitable design language for the mockups to ensure transparency 

and help users understand what is going on. A design language consists of the following 

elements, as expressed by Benyon (2019, p. 227): 

 

https://preview.uxpin.com/bb00191bbda661b1e9753e9bf0148ef32cad139d#/pages/147644925/simulate/sitemap?mode=chd


 39 

ǒ A set of design elements such as the use of color, styles, and types of buttons, 

sliders, and other widgets 

ǒ Some principles of composition (i.e., the rules of putting them together) 

ǒ Collections of qualifying situations ï contexts and how they affect the rules  

 

To achieve a suitable design language, the color scheme was based on Aaron Marcusôs five-

color design rules and the colors presented on K14ôs website and prospect (Benyon, 2019, p. 

308). This resulted in a palette of four colors and two variations of black and white (Appendix 

14). The four colors had varying opacity according to each design element and page, based 

on color areas that exhibit a minimum shift in color and or size. Additionally, simultaneous 

use of high-chrome spectral colors was avoided. The color design is coherent with Marcusô 

presentation of Western color conventions (Appendix 15). As the mockupôs design primarily 

consists of green and white colors, it corresponds with Marcusô color conversion, with green 

symbolizing elements such as clearness, vegetation, safety, and okay. These elements 

confirm K14ôs vision of being a modern and sustainable facility, with various employees and 

visitors of numerous generations (K14, 2020, pp. 27-29).  

 

Moreover, the design languageôs general style is characterized by consistent fonts, including 

size and color, button types and size, and the shape and radius of elements. K14 has a 

vision of being modern. Morales (2021) claims that there are four main types of typography. 

The design language of our project has a Sans Serif font by the name Poppins, which is 

similar to the font Roboto, one of Moralesô recommended font types. Besides being 

considered a modern font, the chosen fontôs readability was considered.  

The elements and buttons had a rounded rectangular shape with a radius of either twenty-

one or ten. This choice is based on rounded corners in both buttons and elements being 

considered more friendly than sharp edges (Malewicz & Malewicz, 2020, s. 46). Additionally, 

when using rounded buttons, other on-screen elements in the background have a different 

ratio than the button, preventing an imbalance in the margins. 

 

6.4 Development 

Before development, the group carried out analytical work to lay the foundation for a 

successful development process. This preparatory work enabled us to start programming 

and avoid pitfalls. 

 

Each sprint started with Sprint Planning, where user stories would be moved from the 

Product Backlog into the Sprint Backlog. The choice and abundance of user stories were 



 40 

based on MoSCoW priorities and the groupôs total capacity for development in each sprint. 

As a result of the preparatory work, each user story would have corresponding acceptance 

criteria. When creating tasks, these criteria would be used as guidelines, and it was ensured 

that each task was of a manageable size for one group member. Planning poker was the 

chosen method for estimating time usage. We would clarify each task before placing our 

initial estimate to avoid confusion. The highest and lowest estimates would discuss their 

reasoning before placing our second estimate based on the presented arguments. We 

selected estimates based on the highest number of votes or the median in case of a tie. 

 

Thereafter, two group members were responsible for writing descriptions for each task in 

DevOps, linking to mockups, diagrams, and other relevant documentation where necessary. 

Group members were then able to choose a task, assign it to themselves in DevOps to avoid 

duplication of work, and log the number of hours spent completing respective tasks. After a 

task was completed, a pull request would be made and marked with the required reviewers. 

The required reviewer would run the code on their phone through Expo and answer the 

following questions: 

 

1. Are the acceptance criteria fulfilled? 

2. Does the code comply with the code conventions? 

3. Does the code run without any bugs? 

4. Does the code have test coverage? 

5. Does the user interface match the intended design? 

 

Answering no to any of these criteria would result in an unapproved pull request, whereas 

approved requests would be incorporated into the development branch. For incorporating 

changes from one branch into another, we had two main options: rebasing or merging. 

Rebasing was chosen as it rewrites the project history, providing a linear overview (Atlassian, 

n.d.). We considered this to be more advantageous, as merging preserves the project 

history, giving a non-linear overview that can make the history cluttered, thus decreasing 

project control. Pull requests were not thoroughly checked until Sprint 3, which in hindsight 

compromised the quality assurance process, and will be discussed in chapter 8.2.5. 

Following Sprint 3, however, pull requests were thoroughly reviewed. 

 

The end of each sprint would then result in a code review and product increment. Each team 

member would present the code they had produced to the group; thereafter, our build 

pipeline was executed. The build pipeline builds our application and executes the tests in the 

cloud while also generating reports for test coverage and an overview of which tests 



 41 

succeeded or failed. Finally, if the team members accepted the code and the pipeline 

succeeded, the code would be rebased into their respective main branches. Then followed a 

Sprint Review with the product owner, before concluding the sprint with a Sprint 

Retrospective. 

 

From the start of the project, the team was divided into smaller teams, with clear areas of 

responsibility to secure the most effective use of our capacity. We operated under a four-to-

two division. Four group members made up the development team, and two were 

responsible for documentation and report writing and assisting the development team when 

needed. Within the development team, the four roles were: frontend developer responsible 

for the design, frontend developer responsible for the functionality, backend developer, and 

full-stack developer.  

 
 

6.5 Project close 

This chapter will explain the closing phase of the project, involving changes related to the 

execution and workload distribution.  

Towards the end of the project, the sprints were shortened to two weeks because the focus 

shifted towards more frequent deliveries and feedback. At the beginning of the development 

phase, the workload between the six team members primarily focused on developing the 

product. Two members were committed to developing backend code, two were assigned to 

develop frontend code, and the last two members were in charge of writing the bachelor 

thesis. As the project came closer to the deadline, the area of focus shifted more towards 

finishing the bachelor thesis. Now, five team members were writing the report while the full-

stack developer implemented the remaining work, tenacious to finish the must-have user 

stories to complete the MVP. 

Even though the focus shifted, we were determined to adhere to the chosen Scrum artifacts. 

Daily standup was utilized without exception and assisted us in continuous updates on 

progress and bottlenecks. The other Scrum artifacts were also present, such as Sprint 

Review and Retrospective, but the topics rather concerned the bachelor thesis. 

  



 42 

7 The Final Product 

In this chapter, we will present the solution to our project. We will focus on the architecture, 

functionality, and further development. 

 

7.1 Architecture and Backend 

The backend architecture solution is a Rest API containing necessary endpoints for the 

frontend to perform requirements stated in the user stories (Figure 9). This included a login-

controller to authenticate users through username and password and provide a JWT as 

authorization. Frontend stores the JWT to gain access to the other endpoints. This is not 

applicable for the registration-controller and password-controller, as one does not need 

authorization to create a user or reset a password. Password-reset is authorized through 

email. The other endpoints is concerned with fetching data such as amenities, businesses, 

and events and contacting and summoning the receptionist. 

The developed microservice utilizes the controller-service-repository pattern, in which the 

controller handles requests, the service performs logic such as data validation and 

calculations, and the repository queries the database, using entities to mirror the database 

tables as java classes.  

 

Figure 9) Backend architecture 



 43 

7.2 Functionality 

Appendix 16 displays the application's landing page; the first page users meet after logging 

in. The purpose is to give users quick and easy access to information and the application's 

functionality. After conducting the analysis, it was clear that each company had very different 

needs and desires for functionality. It is therefore intended to make this page customizable, 

enabling users to choose which features appear on their homepage.  

 

The page shown in Appendix 17 is the K14 building page. The purpose of this page is to 

easily allow users to navigate to functionality relating to receptionist tasks and services that 

K14 will offer. The six chosen options are based on our previous communication with K14 

representatives and data collected from the future building tenants. Considering that we are 

creating a receptionist module, we deemed this page as particularly important, thus placing it 

in the navigation bar to make it easily accessible.  

 
Many interviewees expressed their desire for an easy way to keep track of their daily agenda 

and meetings. Appendix 18 shows the implemented calendar function. This function allows 

users to have a clear overview of their daily plan, upcoming events, and create bookings. 

The K14 building will facilitate room booking for meetings, public conferences, and seminars. 

The calendar has different colors to help differentiate between private and public events and 

events spanning multiple days.  

 

Appendix 19 presents the implemented contact personnel page. This page can be accessed 

from the navigation bar and homepage, as shown in Appendix 16. Having the option of 

contacting a receptionist was desired by all interviewees in case of urgent need of 

assistance. This page offers three means of communication, depending on the urgency of 

the situation:  

1. Directly call the receptionist from your phone by pressing the call button.  

2. Summon the receptionist to the reception desk. 

3. Leave the receptionist a message. 

 

Appendix 20 presents the K14 information page. The purpose of this page is to display static 

information about the building. Its primary intended use is to give, mainly guests, insight into 

what K14 offers. 

 



 44 

7.3 Testing 

To ensure the application's ability to function properly, we have written tests for the majority 

of the code. For the backend, we used JUnit to create integration tests, meaning that we test 

the endpoint and verify that it returns the expected HTTP status on a given scenario. JaCoCo 

reports a test coverage of 87%, exceeding Knowit´s requirement of 80%. 

 

One test was written for the frontend, namely a test for ensuring that the login functionality 

met its acceptance criteria. This was done regardless of it not being one of Knowits 

requirements as we wanted to measure and ensure the quality of the user experience. 

 

7.4 Facilitating Further Development 

The scope of our project was the first module for the K14 application. The future modules will 

make up a potential future internship, master's, and bachelor's projects, and it has therefore 

been essential to facilitate further development. 

 

7.4.1 Analysis 
Despite many functions not being within our project scope, we were consistent with including 

all aspects in our problem and application domain analysis. We reduce the amount of 

preparatory work needed by future teams and ensure that the application is implemented as 

intended by addressing these areas. An example is our previously shown navigation 

diagram. This diagram shows the planned navigation to all the applications pages, 

additionally showing users with their respective areas of access. 

 

7.4.2 Design 

The design team created mockups for some pages outside the scope, including components 

that facilitate navigation to undesigned pages. For example, pages leading from parts of the 

navigation bar and the óeditô and óalertô icons on the index page do not have any functionality 

or design. The icons were included to illustrate where this functionality is intended. A 

consistent color palette was used throughout all designs, along with consistent buttons, 

backgrounds, and more, to facilitate designing new pages uniform with what we already have 

produced. 

 

7.4.3 Code Conventions 

The applicationôs code is written in English, despite the applicationôs content only being 

displayed in Norwegian. English is the most widely spoken language, and therefore, we 



 45 

facilitate developers from all countries in understanding our code (Statista, 2022). We have 

consistent code documentation and have followed a set of code conventions (Appendix 21). 

This has ensured clear and logical names for classes, functions, files, and folders to avoid 

confusion and reduce the time needed to become familiar with the code. By creating default 

properties for various design components, it is easier to implement our intended design, as 

well as create a design that is consistent with what we have already implemented. 

 

7.4.4 Database 

Numerous changes were made to our database throughout the development phase to 

facilitate further development. We decided to limit the use of enums in tables and instead 

create extra tables to hold these values. Enums should be used to hold a static set of values, 

and the use of this data type would hinder future developers from changing said values. We 

implemented this change in, for example, the FAQ table by removing the ñCategoryò enum 

and instead created a table to hold these categories. FAQ pages are often under constant 

modification; thereby, it is essential that we facilitate the addition and deletion of categories, 

questions, and answers.  



 46 

8 Reflection 

This final section will reflect on the decisions made throughout the project, the challenges we 

have faced, and how we have attempted to handle these. We will also discuss how these 

aspects affected the progress of the project. 

 

8.1 Process and Methods 

This subchapter will present the reflection revolving around the most influential processes 

and methods in this project. Firstly, we will reflect on both the benefits and disadvantages of 

the chosen methodology, before discussing the exclusion of the Scrum Master role. 

Furthermore, we will discuss the importance of sprint planning and associated problems. 

Additionally, challenges regarding work capacity and data collection will be reflected upon. 

Moreover, we will discuss the transition of moving from one phase of the project to the next, 

before lastly including adaptation to development challenges and concluding what quality 

really entails.  

 

8.1.1 Methodology 

Despite the overall impression of the chosen methodology being positive, we have faced 

some challenges in the process. We felt a lack of control concerning the backlog in various 

sprint iterations, due to modifications in the respective Sprint Backlogs. However, after the 

meetings with the client, we got the impression that the lack of requirements would demand a 

more agile approach, therefore, enabling change in the Sprint Backlogs if necessary. Change 

is inevitable with an ambitious client presenting vague information, few requirements, and 

limited interactions. We concluded that the chosen methodology befitted this project to a 

great extent. The reason being that the project was poorly defined, and we had to conduct 

data collection and a thorough analysis to accommodate the lack of information. Therefore, a 

methodology that allowed us to respond to ongoing changes was crucial. Moreover, it was 

established that the XP methodology would be utilized should there be a lack of progress in 

development. However, rather than adopting a new methodology, we decided to shorten the 

sprint lengths with the intent of rapid feedback and frequent deliveries. Considering the lack 

of communication with the K14 representatives, shortening the sprints allowed us to get the 

sense of direction we needed to advance with the project.  

As we decided to use an Agile framework with a selection of Scrum Artifacts, rather than 

Scrum in a traditional sense, expected roles like Scrum Master were excluded. Early in the 

process, we established guidelines, individual and collective expectations, and ambitions to 

develop the team contract further. During the presentation of these topics, a discussion 


































































