
Simplifying GIS: Developing
web-applications for Atlas

By Group 21 and Group 22 in IS-304:

Group 21: Lukas Aubert Andersen (lukasaa@uia.no)

Marius Evensen (mariue17@uia.no)

Sebastian Midtskogen (sebastiam@uia.no)

Tom André Slåen Myre (tamyre@uia.no)

Markus Nilsen (markusnil@uia.no)

Group 22: Glenn Joakim Bakklund (gjbakklund@uia.no)

Eirik Silseth Bjørdal (eiriksbj@uia.no)

Markus Ribe (markusri@uia.no)

Lars Henrik Bjørck Råkil (lhraakil@uia.no)

Course ID IS-304

Course Name Bachelor Thesis in Information Systems

Course Coordinator Hallgeir Nilsen, Geir Inge Hausvik

Thesis Supervisor Lucia Castro Herrera

Due Date May 16, 2024

Word count Approx. 18 000

Yes No

We confirm that we do not cite or use others work unless this is
listed, and that all references are listed in the bibliography.

2� 2

Can the submission be used for teaching purposes? 2� 2

We confirm that everyone in the group has contributed to the sub-
mission.

2� 2

mailto:lukasaa@uia.no
mailto:mariue17@uia.no
mailto:sebastiam@uia.no
mailto:tamyre@uia.no
mailto:markusnil@uia.no
mailto:gjbakklund@uia.no
mailto:eiriksbj@uia.no
mailto:markusri@uia.no
mailto:lhraakil@uia.no

Simplifying GIS: Developing web-applications for Atlas

Abstract
This thesis encapsulates the combined work and effort of group 21 and group 22 on
two projects developed for the company Atlas (atlas.co) in order to complete our bach-
elor’s degrees. These two projects involve developing web applications, in an attempt
to modernize aspects of traditional Geographic Information Systems (GIS). Specifically,
one project attempt to simplify a process called georeferencing, and the other attempt
to create an introductory tool for creating maps utilizing AI based on text input.

Utilizing a tech-stack comprised of primarily Python and Next.js, we also explore dif-
ferent methodologies and tools for project management, such as the Scrum framework.
We describe how we utilized the various methodologies and tools, and explain the im-
plementation and development of the projects. We describe some more technical aspects
of the projects, such as describing deployment pipelines. We further argue on the qual-
ity aspects of the projects, and present the final products of each project, as well as
deliberating on the projects’ journies and results.

In assessing our project goals, we acknowledge the progress made in simplifying GIS
functionalities with Image2Map and Text2Map. Although Image2Map streamlines geo-
referencing, it lacks advanced image manipulation and GeoTIFF modification features.
Text2Map succeeds in query-based visualization, but requires refinement in data input
and map shareability. Despite these limitations, both applications offer valuable fea-
tures and lay a foundation for future development. The groups have gained significant
experience, meeting personal academic standards. Although not fully meeting initial
expectations, a satisfactory note from Atlas, as well as our experiences as a collective
group, suggests that we have completed the projects in a respectable, professional, and
satisfactory manner.

i

https://atlas.co

Simplifying GIS: Developing web-applications for Atlas

Preface
Welcome to our thesis detailing our exciting experiences creating applications for Atlas as
our Bachelor’s project. During this project and our time at the University of Agder, we
have encountered many challenges and reached many personal milestones. In addition,
we have had the pleasure to work with and meet so many incredible people. We therefore
think it is time to properly thank these people:

First, we would like to thank our wonderful thesis supervisor, Lucia Castro Herrera, for
the great support during the semester and for helping us with proof reading and giving
valuable feedback, booking meeting rooms and showing up for us so often.

Further, we would like to thank our professors in IS-304, Geir Inge Hausvik and Hallgeir
Nilsen, and the Atlas team, fronted by the best hype-man – Fredrik Moger, for the
opportunity to write such an interesting thesis. We learned so much during our time
developing these two projects; about how we work as a group, how we work individually,
and our flaws and strengths.

Another thanks goes to Terje Gjøsæter, for letting us conduct user testing during one of
his classes (and for being an excellent professor).

As this thesis marks the end of our course of study, we would therefore also like to
thank all the other professors we have had the pleasure of meeting at UiA, including
(but not limited to) Janis Gailis for his technical knowledge and pure enthusiasm about
technology, Øystein Sæbø for engaging and motivating us since the beginning, Polyx-
eni Vasilakopoulou, Espen Limi, Niels Frederik Garmann-Johnsen, Peter André Busch,
Pouria Akbarighatar, Ilias Pappas, Marco Seeber, and the rest. Thank you for teaching
us so many things and guiding us through the courses! It has been six great semesters
and we thank you for that.

We would also like to thank our families, (four-legged) friends, and lovely partners for
the love and support throughout this semester, as well as the other semesters.

Lastly, we thank you, the reader, for taking the time to read this thesis!

ii

Simplifying GIS: Developing web-applications for Atlas

Glossary
To ease the reading experience throughout the report, we present some terms and defi-
nitions which might enlighten the meaning of the report itself.

• AI (Artificial Intelligence) has no standardized definition, but is commonly used
to refer to systems that can somewhat mimic human behaviour/intelligence (Eu-
ropean Commission et al., 2021, p. 9). It is a rather broad term that encompasses
many different technologies and systems, such as OpenAIs ChatGPT. In our case
it is mostly used to interpret text and generate responses.

• An API (Application Programming Interface) can be used to send, get, edit
and delete data from an already existing system (Goodwin, 2024). In our case,
APIs are used in the projects to do various tasks in the back-end, like conversion
or map-manipulation.

• Branch (in version control) is a term used for any different line or version of a
project that deviates from the main line of development, where work can continue
without affecting the main line (Chacon & Straub, 2024, p. 63)

• Docker is a platform and tool used to build, run, share and verify an application
easily without the major environment setup and management (Docker, 2024). This
means that we can build Docker-images that can then be run in a Docker-container,
which we can transfer to other machines. When these images and/or containers
are transferred, it is almost guaranteed that they behave the same way as they do
on the other machine.

• Figma is a collaborative design-tool used for modeling and designing websites and
user interfaces, and is widely used in the design community for its ease of use,
powerful features, and ability to streamline the design process (Figma, 2024).

• GCPs (Ground Control Points) are identifiable markers on the Earth’s surface
with known geospatial coordinates, and serve as reference locations for georeferenc-
ing aerial or satellite images with real-world geographic coordinates (Zmejevskis,
2022).

• Geo-TIFF is a tiff-image utilized for storing geographical metadata, which means
that the image (e.g. satellite imagery or maps) has metadata to inform programs
where the image exists in the real world (Sazid Mahammad & Ramakrishnan, 2003,
p. 4).

• Georeferencing is the process of taking a digital image, such as a scanned photo
of a map or a satellite picture, and embedding geographical data. This is achieved
by pairing the image’s pixels with the latitude and longitude of where it exists in
the real world to bind them together (Science Education Resource Center, 2024;
USGS, n.d.).

iii

Simplifying GIS: Developing web-applications for Atlas

• A GIS (Geographical Information System) is a system that is responsible for
creating, saving, manipulating and presenting information regarding geographical
data, like the surface of the Earth (National Geographic, 2023).

• Git is a version control system (VCS) designed to track changes to files over time.
One of the key features compared to other version control systems is that Git stores
snapshots of files rather than just changes, which makes it efficient and good for
large projects. It makes it possible to work on local computers, without the need
to constantly be connected to a server. Additionally, it checks files to make sure
they have not been changed by accident (Chacon & Straub, 2024, p. 14-17).

• JSON (JavaScript Object Notation) is a file type used to store structured
information, and is typically used for data-transferring (MDN Web Docs, n.d.).
In the project, it is used to transfer and use geographical data about locations
(GeoJSON), and sometimes as configuration files.

• LLMs (Large Language Models) are defined by IBM (n.d.) as a category of
foundation models trained on immense amounts of data, a process that makes
them capable of understanding and generating natural language and other types of
content to perform a wide range of tasks.

• Mapbox supports maps and location services for a wide variety of web, mobile,
automotive, and gaming applications (Mapbox, n.d.). Whenever we refer to Map-
box in this project we are specifically referring to Mapbox GL JS React which is a
JavaScript library for creating interactive vector maps on the web (Mapbox, 2023).

• Merge (in version control) is a term used for the process of joining two or more
development histories together into one. (Chacon & Straub, 2024, pp. 53–54).

• MVP (Minimum Viable Product) is the initial version of a product with the
core set of essential features necessary to achieve the project’s primary objectives
(ProductPlan, 2022).

• PNG is a widely utilized image format, due to its lossless data compression and
possibility for transparency, however they are generally larger than formats such as
JPG and GIF (Adobe, n.d.).

• Pull request (in version control) is a term used for a request that signals the
desire to merge a collection of changes from one git-branch in to another. (Chacon
& Straub, 2024, p. 144)

• Repository is a remote storage location that contains code and files (GitHub,
n.d.-b).

• Tech-stack, or stack, is a collection of different technologies that get used to
develop and shape a project; it is used to describe the combination of programming
languages, frameworks, the front-end, and the back-end used in a project (Gracilla,
2022; Heap, n.d.).

iv

Simplifying GIS: Developing web-applications for Atlas

• TIFF (Tag Image File Format) is a flexible image file format that is used for
storing high-quality images along with a wide variety of metadata (Adobe, 2023).

v

Simplifying GIS: Developing web-applications for Atlas

Table of Contents

1 Introduction 1

2 Background 1

2.1 About the projects . 1

2.2 Client: Atlas . 2

2.3 Team structure . 3

2.4 Goals and ambitions . 4

3 Project Management 5

3.1 Project management tools . 5

3.1.1 Task management: Trello . 6

3.1.2 Communication: Discord . 6

3.1.3 Version control: GitHub and Git 7

3.2 What is Scrum, and why use it? . 8

3.2.1 Scrum participants . 8

3.3 Product backlog . 9

3.4 Sprint backlog . 9

3.5 The sprints . 9

3.5.1 Pre-sprint . 10

3.5.2 Sprint planning . 11

3.5.3 Daily-standups . 12

3.5.4 Meeting with client (Atlas) . 13

3.5.5 Sprint retrospect . 13

3.5.6 Boilerplate . 14

vi

Simplifying GIS: Developing web-applications for Atlas

3.6 Time estimation . 14

4 Project Implementation 15

4.1 System requirements . 15

4.2 System definitions . 16

4.2.1 Prioritization of system criteria 16

4.3 Graphical design principles . 16

4.3.1 Design inspiration . 17

4.4 User interface . 17

4.4.1 Layout and Navigation . 17

4.5 System development life cycle . 17

4.5.1 Key Elements of Our Scrum Implementation 18

4.5.2 Advantages of Scrum for Our Project 18

4.6 System architecture . 19

4.6.1 Image2Map . 19

4.6.2 Text2Map . 20

4.7 Back-end . 21

4.7.1 Image2Map . 22

4.7.2 Text2Map . 22

4.8 Front-end . 23

4.8.1 Image2Map . 23

4.8.2 Text2Map . 24

4.9 API . 25

4.9.1 Encapsulation . 25

4.9.2 FastAPI & Performance . 25

vii

Simplifying GIS: Developing web-applications for Atlas

4.9.3 External APIs . 26

4.10 Continuous integration and delivery . 26

4.10.1 Use of pipelines in the projects 27

4.10.2 Deployed application, Heroku . 28

5 Quality Control 28

5.1 Defining quality . 29

5.1.1 Process Quality / Quality assurance 29

5.1.2 Quality control . 29

5.1.3 Code Quality . 29

5.1.4 Product Quality . 30

5.2 Implementing quality . 30

5.2.1 Process Quality / Quality assurance 30

5.2.2 Quality control . 31

5.2.3 Code Quality . 31

5.2.4 Product Quality . 33

6 Final Product 33

6.1 Summary of development timeline . 33

6.2 Functionality . 35

6.2.1 Image2Map . 35

6.2.2 Text2Map . 36

6.3 Architecture . 37

6.4 Further development . 37

6.4.1 Image2Map . 37

6.4.2 Text2Map . 38

viii

Simplifying GIS: Developing web-applications for Atlas

7 Reflection 39

7.1 Summary of Project Goals and Objectives 39

7.2 Methodology and Tools . 39

7.3 Software Development Process . 40

7.4 Comparison of GIS software solutions . 41

7.5 Achievements and challenges . 42

7.5.1 Achievements and milestones in Image2Map 42

7.5.2 Challenges and difficulties in Image2Map 43

7.5.3 Achievements and milestones in Text2Map 43

7.5.4 Challenges and difficulties in Text2Map 44

7.6 Progress . 45

7.7 Quality . 46

7.8 Limitations . 47

7.9 Lessons learned . 48

7.9.1 Lessons learned along the way . 48

7.9.2 Important decisions . 49

7.9.3 What went well? . 49

7.9.4 What could have been done differently? 49

8 Conclusion 50

Appendix A Extended information on tools etc. 56

Appendix B Additional Figures 65

Appendix C Daily Notes 90

Appendix D Scrum retrospectives 91

ix

Simplifying GIS: Developing web-applications for Atlas

Appendix E Image2Map: Future development 93

Appendix F Text2Map: Future development 100

Appendix G Client statement from Atlas 104

Table of Figures
1 Overview of teams, only names . 3

2 Organizational chart . 3

3 Example card from the Trello board . 6

4 Discord examples . 7

5 Figma overviews . 10

6 The projects Trello boards . 12

7 Timetable for Sprint 13 . 15

8 Initial draft of Image2Map’s system architecture 19

9 Final Image2Map system architecture . 20

10 Final Text2Map system architecture . 20

11 Screen with uploaded photo and some markers placed 24

12 Screen with generated map and some text information 24

13 Documentation Page for Text2Map with one of the drop down opened . . 25

14 Discord voice channels . 31

15 An abstract class method named "saveFile" 32

16 Split View after uploading and placed a marker on the map 35

17 Split View after asking Text2Map Chat Where bananas are grown. . . . 36

18 Confirmation of geographic metadata on image 42

19 Achievements for Text2Map development 44

x

Simplifying GIS: Developing web-applications for Atlas

B.1 Figma Image2Map Overview . 66

B.2 Figma Image2Map Landing Page . 66

B.3 Figma Image2Map file upload . 67

B.4 Figma Image2Map file upload fail . 67

B.5 Figma Image2Map file upload success . 68

B.6 Figma Image2Map Pre Edit of file . 68

B.7 Figma Image2Map Side by Side . 69

B.8 Figma Image2Map Selecting point 1 . 69

B.9 Figma Image2Map finished point 1 . 70

B.10 Figma Image2Map Auto-suggest point 70

B.11 Figma Image2Map Coordinates table . 71

B.12 Figma Image2Map Hover on coordinates 71

B.13 Figma Image2Map clipping . 72

B.14 Figma Image2Map choosing Transform 72

B.15 Figma Image2Map Map view overlay 1 73

B.16 Figma Image2Map Map view overlay 2 73

B.17 Figma Text2Map Overview . 74

B.18 Figma Text2Map Landing page . 74

B.19 Figma Text2Map Clean text Input page 75

B.20 Figma Text2Map Spreadsheet input . 75

B.21 Figma Text2Map Asking AI . 76

B.22 Figma Text2Map Initial AI response . 76

B.23 Figma Text2Map Centered on a location 77

B.24 Figma Text2Map Adding new location 77

B.25 Figma Text2Map Edit location . 78

xi

Simplifying GIS: Developing web-applications for Atlas

B.26 Figma Text2Map Embed map . 78

B.27 Figma Text2Map Sharing Map . 79

B.28 Figma Text2Map Exporting Map . 79

B.29 Card in Norwegian, description is a User Story of Cropping 80

B.30 Card in Norwegian, description is a User Story of Satellite-View 80

B.31 Card in Norwegian, description is a User Story of Uploading Formats . . 80

B.32 Simple sketch of the "map toolbar" . 81

B.33 Simple sketch of the landing page . 81

B.34 Mockups of dropdown menus used on mobile devices 82

B.35 Collective data of work hours . 82

B.36 Landing Page of Image2Map . 83

B.37 PDF Selector for Image2Map . 84

B.38 Split-View in Image2Map, One of the essential user view’s for the app to
function. 84

B.39 Crop in Image2Map, Side tool for a user to adjust the image by cropping 85

B.40 Overlay-view in Image2Map, One of the essential user view’s, where the
user is able to validate the result. 85

B.41 Docs (Swagger docs) of back-end endpoints in Image2Map, Number 1 . . 86

B.42 Docs (Swagger docs) of back-end endpoints in Image2Map, Number 2 . . 87

B.43 Split View after asking the GPT about where bananas are grown. 88

B.44 Landing page for Text2Map . 88

B.45 Landing page for the CSV part of Text2Map 89

B.46 Landing page for the Text part of Text2Map 89

Table of Tables
1 Descriptions of Collective Roles . 4

xii

Simplifying GIS: Developing web-applications for Atlas

2 Descriptions of Team Roles . 4

xiii

Simplifying GIS: Developing web-applications for Atlas

1 Introduction
Understanding the world through maps has been an important part of human history for
millennia. With the introduction of computers, maps and tools were digitized to take
advantage of the digital benefits that computers could bring (Damoor, 2019; Geoapify,
2023). While more and more applications and tools are becoming web-based (such as
Google Docs, Figma, etc.), with a large focus placed on ease of use, the world of GIS
appear to have been falling slightly behind. GIS tools tend to have a high barrier of entry
and difficulty of use, creating a growing need for services that are easy to learn and easy
to use (FuseGIS, n.d.; Goldin & Rudahl, 1997; Sheehan, 2018). In the next chapter, we
will go over the two projects we are working on, our employer, our two teams, and our
goals and ambitions.

2 Background
Understanding what the two projects entails, who our client is, both teams, as well as
our goals and ambitions is essential before diving into how we solved both projects.

2.1 About the projects
With the above-mentioned needs in mind, let us introduce our two solutions to help
mitigate some of the problems faced with GIS-software:

The first project is named Image2Map, where the main goal is to create an application
in which users, even those with minimal experience with GIS, can georeference images
quickly and easily. In other words, this means that the user should be able to upload an
image of a map or a satellite photo, then georeference it, and lastly receive a file with
updated metadata like coordinates.

This should be done by presenting the user with a split-view, where there is an interactive
map on one side and the uploaded image on the other. They should then be able to place
markers on both the map and the image, to reference real life coordinates to the image’s
pixels. Additionally, the user should be able to preview the georeferenced file by showing
the file overlayed on an interactive map so that the user can check if the result is as
desired. Lastly, the user should be able to perform some sort of post-processing after
uploading, such as cropping the image, so that the user requires as few additional tools
to get a completed image.

The second project, Text2Map, is intended to be a simple-to-use tool for visualizing the
placement of locations around the world through the use of a given text or data source.
By inputting a piece of text that, for example, explains the history and countries involved
in World War II, these countries will be highlighted on an interactive map, along with

1

Simplifying GIS: Developing web-applications for Atlas

markers displaying additional information and images related to the country. In addition
to this core feature, the application offers users the option to engage with an AI chatbot
where users can ask questions about locations, and have locations from the received
responses visualized on the interactive map. A user can for example ask where bananas
are grown, and have the countries and areas displayed, along with contextual information
from the chatbot.

2.2 Client: Atlas
Atlas is an emerging company based in Oslo, Norway. The company was founded in 2021
under the name Enernite by 4 students attending the Norwegian University of Science
and Technology (NTNU) (Moger et al., 2024). Since then, the company changed its
name from Enernite to Atlas in 2023 (Atlas, 2023). Atlas has received funding both from
governmental organizations, such as Innovation Norway and The Research Council of
Norway, and from various international investors that believe in Atlas’s vision, including
the European Space Agency. In total, the company has raised approximately €2.5 million
as of February 2024 (Moger, 2024).

Atlas’ main product is their GIS web application, described by them as "The Figma of
the GIS-world". This web application aims to revolutionize the way users are able to
manipulate and edit maps, by providing an easy to use online tool. Current desktop ap-
plications such as QGIS and ArcGIS, while powerful, typically involve complex interfaces
that can be cumbersome and challenging for new users, often requiring extensive training
to navigate effectively. This gives Atlas the opportunity to address a significant skill gap
within the GIS community. As of the writing of this report, Atlas has capitalized on this
opportunity by positioning itself within a niche in the market with high potential. Their
innovative web application promises ease of use and flexibility, offering a user-friendly
alternative to more technically demanding traditional platforms, thus improving accessi-
bility and simplifying the user experience. Atlas’ main strength lies within this approach
of creating a simple yet powerful web-based GIS tool alternative.

There’s a revolution happening in business software right now. Notion is
changing how we organize, Figma how we design and Slack changed how we
communicate. However, maps and geographical information systems (GIS)
has remained relatively static. Millions of businesses across the world are
using software that were designed for a time when the speed, scale, data and
capabilities that businesses require today could not be conceptualized. (Atlas,
2023)

Our primary contact person within Atlas is Fredrik Moger, CEO and one of the 4 co-
founders of Atlas.

2

Simplifying GIS: Developing web-applications for Atlas

2.3 Team structure

Figure 1. Overview of teams, only names

As mentioned in previous sections, we are
two teams working for the same company
on projects that have a lot in common.
Given the overlap, it became necessary to
explore how we could organize and struc-
ture the group as a whole. Our teams,
shown in Figure [1], each work on a differ-
ent project, yet share many common ele-
ments, such as client, tech-stack, and goals
and ambitions, as elaborated in Section
[2.4]. This led us to adopt a collective or-
ganizational framework, as can be seen in
Figure [2] below. This methodology not
only helps coordination, but also encour-
ages cooperation between teams with the aim of enhancing both projects.

Figure 2. Organizational chart

In reality, this combined organizational structure visualizes the assigned roles, as well as
what responsibilities within the collective the person has. Table [1] and Table [2] below
give a short description of how the roles are defined and the responsibility given to the
members of the collective. Each member has, in most cases, more roles, or sub-roles, than
given in the organizational chart. The roles given in the organizational chart represent
their main tasks. The reason for having more roles than given comes from our agile
viewpoint, where we aim to be as flexible as possible and to be able to solve and fix
issues as effectively as possible.

Collective level roles:

3

Simplifying GIS: Developing web-applications for Atlas

Role Is responsible for
Leader Leading "collective" meetings, or delegate leading in meetings, develop

and provide suggestions on management & management structure
implementations, and responsible for developing guidelines for the
code base, for example branching strategies and how to contribute.

Vice Leader Taking on leadership responsibilities when the leader is not present,
helping the leader fulfill his role, and ensuring that the leader follows a
democratic and fair approach to collective decisions.

Table 1. Descriptions of Collective Roles

Team level roles:

Role Is responsible for
Team Leader Team management, being the Scrum master (read more in

Section 3.5.3), and providing guidance when necessary.
Vice Team Leader Helps the team leader with their tasks, and acts as team leader

when the team leader is not present.
Developer Produces code additions or changes to the software, and

enhances the product.
Documenter Takes notes during meetings, daily stand-ups and more, and

makes sure that important verbal instructions or information is
written down.

Tester Uses software testing techniques, such as walk-throughs and
peer reviews.

UX/UI Focuses on the user experience and user interface of the
application.

Table 2. Descriptions of Team Roles

2.4 Goals and ambitions
Before we start to explore the management and development process of the applications,
it is important to have clearly defined goals and ambitions in advance. Hence, having
a clear direction in which to work towards, which can hopefully help elevate the final
products.

Our overarching goal for the projects is to create GIS applications that improve and
simplify elements of existing GIS applications and solutions. The reason for this, as
mentioned in Chapter [1], is that GIS applications are often heavy desktop applications
that feel outdated and are difficult to learn and master. This overarching goal leads us
to the individual goals of the applications.

4

Simplifying GIS: Developing web-applications for Atlas

As previously stated in Section [2.1], Image2Map is intended as an online service to
georeference satellite images, maps, etc. The main goal of Image2Map is therefore to act
as a tool which both simplifies the georeferencing process over traditional tools, as well
as making it accessible to more users by developing it as a web application.

Text2Map is intended as an easy-to-use online tool to visualize data and text as digital
maps, also as stated in Section [2.1]. Based on this, the main goal of Text2Map is to be
a tool that is easy and effective to use, with minimal preliminary knowledge of GIS tools
as possible. As a more concrete goal, the user should be able to provide data, such as a
CSV file or text, and get a visualized map of the data in return. In addition, the user
should be able to perform queries within the system and have the answers visualized.
Both of these tasks should be accomplished utilizing AI, at the request of Atlas.

Academically, our first goal is to learn as much as possible in relation to the separate
projects (topics such as GIS, maps, etc.). Our second goal is to complete the projects and
the report in a manner that satisfies us, our professors, and external examiners. Our last
and arguably most important goal is to learn from the development experience and the
final applications; What did we do well, what did we do wrong, and how can we replicate
what we did well? Answering these questions will greatly assist us to best prepare for
future work within the IT sector, as well as others embarking on similar projects.

With all of these goals in mind, we aim to create services that will be satisfactory to Atlas
and Atlas’s customers, as well as document any important lessons and findings that may
assist others within the GIS and general IT sector.

3 Project Management

In this chapter we will go over our methodology related to how the development of the
projects was managed, such as tools for task management, communication, and version
control, our usage of the Scrum framework, as well as time estimation and logging.

3.1 Project management tools

Choosing the right tools is essential for proper project management. Expanding within
this section, we are going to talk about the various tools we use to manage our project;
where we keep track of our tasks, our choice of communication tool, and how we manage
and distribute code for the project.

5

Simplifying GIS: Developing web-applications for Atlas

3.1.1 Task management: Trello

Trello is a platform utilized to manage tasks in both projects, which are divided into
boards that are heavily based on Kanban, a workflow for assigning tasks with a descrip-
tion and grouping them up in categories (Radigan, 2024). Trello offers collaboration and
real-time updates in the Kanban-board, and proved essential for us both in reflection on
progression and improvement as well as planning in every phase of the project.

The board is divided into several categories. Tasks that are yet to be done are either in
the product backlog or in the sprint backlog, which we will go into further detail later in
this chapter. Once someone starts a task, they assign themselves on the card and move
it to the "doing" section of the board. Once the task is completed, the card is moved to
the "code review" section, where after the completed task has been reviewed, it is moved
to "testing". Figures illustrating this can be found in Section [6].

Figure 3. Example card from the Trello

board

In addition, various cards have varied im-
portance and difficulty. Figure [3] illus-
trates the different "tags" that a card can
utilize; "Medium" signifies the estimated
difficulty of the task, where "Easy" is es-
timated to be completed in maximum one
day, "Medium" at worst within the week,
and "Hard", which may take more than a
week to complete. "Hard" tasks may be
broken into smaller tasks, where the "Hard" card stays as an overarching task to keep
track of larger features.

"Bug" is a tag utilized for signifying tasks that are considered bugs, which means that
something isn’t working as it should, often as a result of new code additions. "Bug" tags
easily show tasks that require somewhat immediate focus and repair.

"Frontend Dev" is used for showing that a task is centered on work in the front-end
section or, by using "Backend Dev", the back-end section of the project. A task can
utilize both tags if the task requires making changes in the code base in both sections.

Lastly, "Highly Important" signifies perceived importance in regards to completing the
project. Additional types of this tag are "Medium Importance" or "Less Important".
These help us to make sure we focus on the correct tasks so that the main features of the
applications are completed. Less important tasks are therefore deprioritized, but may be
completed if there is time.

3.1.2 Communication: Discord

Discord is the main platform for communication and the core platform for doing remote
work, with key features such as sending messages and IP telephony (Discord, n.d.). It

6

Simplifying GIS: Developing web-applications for Atlas

has been heavily used for sending resources to each other, as Discord lets us create
several text and voice channels to have different chat rooms for different topics. We tried
to simulate an office environment as much as possible by having voice channels such
as meeting rooms (Møterom), an open office landscape (Åpent Kontorlandskap) where
people work in silence, and a canteen (Kantina) for people to use while having lunch, as
can be seen in Figure 4. The main reason for the different rooms has been to be able
to contact people as we work, as well as to quickly get an overview of what people are
doing. This possibility, along with everyone in the groups already being familiar with
Discord, made it easy to choose Discord as our primary communication tool.

(a) Discord channel overview, with categories (b) Discord in use

Figure 4. Discord examples

3.1.3 Version control: GitHub and Git

One of the main benefits of utilizing a version control system, in our case Git through
GitHub (see Appendix [A.1]), is the possibility to have different "branches" of code. A
repository typically has one "main branch", which serves as the base branch on which all
code changes are based. This means that any new "branches" originate from the code on
the main branch but are able to be worked on separately; it is then possible to integrate
the new branch together, when a code change has been made, with the main branch
(or another branch) through a "merge" (GitHub, n.d.-a). In GitHub, we can set rules
and requirements that must be met to merge one branch with another. These rules are
typically applied to the main branch and can protect and ensure the integrity of the code
base from unintended changes.

We took advantage of these rules and requirements in our project’s GitHub repositories,
Image2Map (Group 21 & The Atlas Repository, 2024) and Text2Map (Group 22 & The
Atlas Repository, 2024), to restrict merges and updates to our base branch with the need
of a "pull request" with the requirement of needing at least one approved code review
from another developer on the team. When the requirement is met, the "pull request" is

7

Simplifying GIS: Developing web-applications for Atlas

approved, and the changes can be merged back to the main branch. By this, we ensure
that all changes have been peer reviewed and/or tested before becoming an official part
of the code base.

3.2 What is Scrum, and why use it?
To understand the Scrum method, and why we utilized it, we first have to understand
how Agile and Scrum are different. Drumond (2022) points out that Agile in itself enables
the possibility to change course fast by small and frequent releases, or sprints in our case,
but lacks the core factor of actually making progress and completing work. Hence it
would seem like Agile in itself remains a philosophy, which is most suited as a component
to add on to. With this understanding of the uniqueness of both Agile and Scrum, it
becomes apparent why Scrum is essential for success in situations like ours (Drumond,
2022).

The essence of Scrum in itself lies in lean thinking and the way knowledge is handled.
By lean thinking, we mean the removal of excess and unnecessary fat. In our case, this
means removing every component and factor that does not prove useful and focusing on
the essentials. Similarly to Agile, we gain knowledge throughout the process, but with
Scrum, we make decisions based on observations and the knowledge we have learned.
Another term that Drumond introduces that defines Scrum is "heuristic", which means
that Scrum is based on continuous learning and adjustments to promote optimal progress
(Drumond, 2022).

Now that we understand the core principles of Scrum, it is important to understand the
Scrum components, which we have aimed to implement into our own projects. These
components include sprint planning, daily stand-up, sprint review, and sprint retrospect
with their own unique features and components. These components will be discussed in
the chapters within "The sprints" [3.5].

3.2.1 Scrum participants

Scrum usually has three main roles, the product owner, a Scrum master, and the devel-
opment team (West, 2022). In our case, the product owner will be Atlas, as they set the
product vision for the team, as well as track our progress, making sure that we achieve
the needs of the product. However, usually the product owner helps to define the project
backlog (West, 2022), and this task has become a collaborative effort of the Scrum master
and the development team. In both groups, the Scrum master’s role is filled by Tom,
aided by Markus R. Tom is the collective leader and facilitates the daily Scrum meetings
and sprint planning, while also managing any potential obstacles making sure that the
team members are unobstructed in their tasks. Finally we have the development team
consisting of the rest of the team members, who’s role in the Scrum consists of giving

8

Simplifying GIS: Developing web-applications for Atlas

their insight into how we can improve the product, helping in sprint planning and goal
setting, as well as quality assurance.

3.3 Product backlog

The product backlog is a collection of features or tasks that was set up during the initial
planning phase of the project. During the pre-sprint, we dedicated a substantial amount
of time to coordinate possible features both projects (more details in Section [3.5.1]).
The backlog consists of project cards that can contain several tags, and these cards are
explained in detail in Section 3.1.1. By having a product backlog, we can get a good
overview of progress and set long-term goals for how the projects can evolve, as well as
add new cards as tasks are completed and the applications evolve.

3.4 Sprint backlog

The sprint backlog is a collection of cards and items directly selected from the product
backlog. When we place the cards in the sprint backlog, it means that these are the
features and ideas that we intend to develop during each sprint. This solves the problem
of taking on too many tasks at once, making it seem overwhelming.

At the start of each sprint planning, both teams discuss the current contents of the
backlog, as well as adding more cards in sync with our predicted workload. How the
sprint backlog was further utilized is discussed in Section [3.5.2].

3.5 The sprints

Throughout both projects, our teams works through several sprints, each planned, ex-
ecuted, and reviewed at its inception. We plan, we execute the plan, review the plan
and repeat the process. This process is both unbudgeable process and agile at the same
time. The agile part comes from planning and reviewing where we reflect on what we
have done and what could improve, whereas the unbudgeable part is reflected in the
continual execution of the planing process. We also reflect on; if the progress we have
made contributes towards our end goal. By repeating this process, it enables us to keep
making progress towards a goal, even if one were to encounter roadblocks or hardships
along the way (Rehkopf, 2019). The sprints, which are arguably the essence of project
management, are the place where we develop the actual projects. Within the upcoming
section, we will discuss what sprints are, as well as what sprints entails.

9

Simplifying GIS: Developing web-applications for Atlas

3.5.1 Pre-sprint

Before the pre-sprint took place, we encouraged each member to develop a personal
project, without any predetermined ideas or features, before attending an internal hackathon
hosted by Atlas at their headquarters in Oslo.

Setting out on these projects was made possible by our mostly confirmed stack compo-
nents, which were received ahead of the "field trip". This prepared the developers on
what to expect from the tech stack and what to learn beforehand, since many of the
developers had never coded in React and/or Python before. This improved skills and
understanding for those who chose to develop a personal project.

The Pre-Sprint started with a trip to Oslo, to meet our client Atlas, and attend a
hackathon there. At this point, we conducted some initial planning for how we were
going to structure our two projects, including finalizing the tech stack, which we were
planning to utilize for development. This resulted in being the same as the one that Atlas
currently utilizes, as planned. Furthermore, we discussed how we were going to manage
our two projects, including discussing how we would do our Scrum meetings, setting up
our Discord server, and defining the roles in the project.

We learned a lot during the initial pre-sprint; About Atlas as a company, what they do,
and what they expected from us in the projects we chose. This was useful information
for us as it set a clear definition of expectations from the very beginning.

(a) Image2Map (Full scale, Appendix Figure

[B.1])

(b) Text2Map (Full scale, Appendix Figure

[B.17])

Figure 5. Figma overviews

Furthermore, Atlas had produced a Figma mock-up of each project, shown in the com-
pound Figure [5]. An in-depth look at each page can be found in Appendix [B.1]. These
figures visualized Atlas’ vision for each project and gave an initial direction for the
projects which would evolve during the sprints; this evolution will be explored in de-
tail during later chapters.

10

Simplifying GIS: Developing web-applications for Atlas

In addition, user stories were created as part of our initial planning process for our
projects. We designed the user stories around the proposed layout of the applications
aiming to create a realistic picture of how the users would navigate the sites. After this,
we created an interpreted feature list for each project, utilizing Atlas’ Figma mockups as
inspiration (see Appendix [B.1]). Using both the mockups and the interpreted feature
list, we could create cohesive user stories based on blueprints taught during previous
courses at UiA and a video example (Codex Community, 2022, 6:39). In creating these
user stories, we followed a simple format. First, we noted the person’s "role" who wants
or needs a certain "feature". Then, we briefly explained the "reason" behind needing that
feature. An example of this can be seen in Appendix [B.3].

Lastly, while we would normally go through the process of creating initial sketches,
wireframes, and mockups for each of the projects. This was not necessary given the
Figma mockups Atlas provided. However, we have utilized parts of sketches, wireframes,
and mockups when discussing some changes made to UI/UX elements compared to the
original mockups (see Appendix [B.4]). These changes will be elaborated on in Section
[4.3], and Section [6.2] later in the thesis.

3.5.2 Sprint planning

What is prioritized throughout each sprint stems from the repeating sprint planning.
During the very first sprint planning, the duration of the sprints was decided to be
one week. The crucial part of sprint planning is to create an environment in which
all participants are motivated, challenged, and crucially a place where everyone can be
successful. The essence of the planning process is to pick the most pressing tasks and
predict how many tasks are reasonable to complete during that sprint (West, n.d.).

As the Scrum master and the development team progress through the project, it becomes
progressively more important to reflect on past sprint planning meetings. By doing so,
both parties can learn, develop and progress as teams and individuals. As we discussed
earlier, the ability to learn and adapt is crucial for the success in the use of Scrum and
Agile development, hence the importance of reflection.

As discussed in Section [3.1.1], Trello is the management tool of our choice. Rather, where
this tool becomes important for sprint planning is the "backlog" and "sprint backlog",
where we as a group discuss, reflect, and come up with a plan on what tasks to prioritize
and how to tackle them throughout the sprints. In Figure [6] below, you will find two
examples of how we set up the Trello boards in the different projects.

11

Simplifying GIS: Developing web-applications for Atlas

(a) Image2Map Trello board (b) Text2Map Trello board

Figure 6. The projects Trello boards

In addition to sprint planning, these Trello boards are reviewed and discussed in sprint
retrospect, found later in Section [3.5.5]. These boards enables us to visualize the project
workflow and highlight what each member is working on. Most critically, it enables us
to break down the projects into smaller parts, or cards, which are easier to visualize and
start working on. As well as visualizing, these boards help us clarify the importance of
each component which leads us towards better prioritization and optimization. These
aspects help the teams stay on track to meet goals and deadlines.

3.5.3 Daily-standups

"The daily stand-up is a short, daily meeting to discuss progress and identify blockers"
(Radigan, 2019).

One could argue a daily stand-up meeting is like a football teams’ "team talk" before a
match, where they discuss plans and strategies, as well as potential issues. A daily stand-
up meeting within a development team is also just that. In our case, we discuss what we
did, what we are going to do, and lastly what potential issues we foresee. Regarding the
participants, ideally the product owner, developers, and scrum master should participate
in these meetings. In our case, it proved most efficient including solely developers and
Scrum master for most meetings , with our product owner instead being included on a
larger meeting at the end of each week.

Our standardized set of questions for daily stand-ups was: What did you do yesterday?
What are you going to do today? Do you anticipate any issues?

These questions enabled us to keep in touch with all developers, where we quickly located
what we had been doing and what we had to do, in order to progress towards our common
goal. The last question proved to be essential to ensure proper progress throughout the
project. By asking this question every morning during daily stand-up, it enabled us to

12

Simplifying GIS: Developing web-applications for Atlas

locate and deal with issues on a very efficient scale.

3.5.4 Meeting with client (Atlas)

In our case, meeting with the client primarily resolves around showcasing current pro-
gression to Atlas. The ideal outcome of these meetings is to confirm with the client that
we are on the right track, and receive feedback on what to improve during the next sprint.

"The purpose of the sprint review is to inspect the outcome of the sprint and determine
future adaptions. The scrum team presents the results of their work to key stakeholders
and progress toward the product goal discussed" (scrum.org, n.d.).

In our case, we separated sprint review and sprint retrospect. There were some com-
ponents that originally remained in sprint review, but worked better for us in sprint
retrospect. The first component is the review of the "Trello" board; normally the product
owner (Atlas) is present in this review. In our case, it worked out better to move it
to sprint retrospect where Atlas is not present. This component was removed from the
sprint review to maximize the actual product feedback, whereas the feedback on how
we managed the project proved to be less important. By doing this, we could optimize
the development process and deliver products that our client would be satisfied with
(Radigan, n.d.).

3.5.5 Sprint retrospect

The sprint retrospective concludes the sprint, and is an event for reflection and learning,
the purpose of which is to create a plan that increases quality and effectiveness (“Scrum
Guide | Scrum Guides”, n.d.).

The idea behind a sprint retrospective is to reflect on how the sprint went, both positive
and negative (“Scrum Guide | Scrum Guides”, n.d.). In our sprint retrospectives, we
included reflections on ourselves as individuals, our processes, and our tools. It was
important to assess whether we were using the right tools for the task and, if not, to find
a solution. We also reflected on our meeting structure and how we conducted our sprints
to uncover potential inefficiencies and issues.

As mentioned in Section [3.5.4], we decided to move the review and discussion of the sprint
backlog to the sprint retrospective meeting. This meeting took place every week after
our meeting with Atlas, at the end of our sprints, and smoothly transitioned into sprint
planning. Moving the sprint backlog discussion to the retrospective meeting allowed us
to more clearly determine future tasks and make the process more efficient. During the
sprint backlog discussion, we split into the two respective teams to focus on the respective
project’s backlogs.

13

Simplifying GIS: Developing web-applications for Atlas

3.5.6 Boilerplate

For us to understand the boilerplate concept, we have to understand "Scrum of Scrums".
"The Scrum of Scrum has a chief purpose: to synchronize the work coming from different
teams who are working on various parts of the same project" (scrumexpert, 2020). In
other words, Scrum of Scrums is a meeting in which selected members of the teams, the
product owner, and the Scrum master participate. The goal is to plan ahead and manage
the work of different teams in the most efficient way. Boilerplate, on the other hand, is a
set of questions that could be included in a meeting like Scrum of Scrums (scrumexpert,
2020). Such questions could be:

• What has your team accomplished since our last meeting?

• What problems occurred, if any, that negatively affected your team?

• What does your team want to accomplish before we meet again?

• What output from your team in future sprints, do you see as possibly interfering
with the work of other teams?

• Does your team see any interference problems coming from the work of other teams?

(scrumexpert, 2020)

With our understanding of Scrum of Scrums and boilerplate questions, we predicted
that such questions would prove beneficial in terms of managing the two teams. At first
we tried with the questions listed above, by asking them while sitting together, which
created some disorder. Most of the members lacked context, which resulted in poor
performance with regard to the results of the questions. To improve performance, we
tried Google Forms, as well as optimizing the questions. The idea behind Google Forms
was to improve accessibility and efficiency, as team members could fill them out when
they had time. Even with these improvements, we experienced poor performance. Most
critically, these questions were too similar to our sprint retrospective and sprint planning.
As mentioned, sprint retrospect and sprint planning take place on the same day, which
proved the boilerplate questions to be insignificant. This experience resulted in increased
clarity in our project management and increased understanding of why we follow through
with sprint retrospect and sprint planning.

3.6 Time estimation
Time estimation is a common practice within tools such as Trello, where teams estimate
how much work they can finish in a sprint. Normally, each task on the board should
have its own estimated time, showing how long it is expected to take to finish. We have

14

Simplifying GIS: Developing web-applications for Atlas

instead utilized a timetable where we explain why we have spent the time we did, and
on what tasks.

Below, as seen in Figure [7], is an illustration of our timetable for sprint 13, which
highlights the start and end times, as well as the breaks for each person each day. The
spreadsheet then calculates the average hours worked in each sprint. This number helps
us gauge how much effort we are putting in and how hard the tasks are. If we spend the
same amount of time in two sprints but finish a different amount of tasks, it suggests
that the tasks in the "less productive" sprint were harder.

Figure 7. Timetable for Sprint 13

4 Project Implementation
As mentioned, the central goal of these two geospatial projects is to significantly im-
prove workflows for GIS users, spanning from single individuals to large businesses. This
chapter explores the process of implementing our two projects; going from concept to
functional program, it covers the steps and decisions that were made, the challenges we
encountered, and solutions we found throughout the development process.

4.1 System requirements
To maximize accessibility, we have designed our software with minimal system require-
ments. The guiding principle is that any machine capable of running a modern web
browser possesses sufficient computational power to execute our tools. Furthermore, we
have optimized the interface for optimal usability on any device with a large display.

15

Simplifying GIS: Developing web-applications for Atlas

4.2 System definitions

This section covers the criteria that specify what our two products have to achieve in order
to meet the requirements set for Minimum Viable Product (MVP). An MVP represents
the most pared-down version of a product that can still be released to early users and
therefore may not include all the functions we were aiming for in the final products.

The MVP for Image2Map requires the ability for users to be able to: Upload a picture
(Image or PDF) to the website, then easily compare and georeference the uploaded image
with a live map, and lastly download the georeferenced picture in some format.

The MVP for Text2Map requires the ability for users to be able to: Input text or a
question to the application, then have relevant locations be extracted and displayed on
a map, and the ability to download the displayed data or save it in some way.

4.2.1 Prioritization of system criteria

The initial focus of our development lies in the development of the core functionality
of the two products we are producing, which is image georeferencing for Image2Map
and text-to-map generation for Text2Map. This strategic decision aligns with the MVP
concept, ensuring that we deliver a baseline product that directly addresses our primary
goals. Although, there is ample potential for future feature expansion, prioritizing the
core functionalities could drive user adoption and establish a strong foundation for future
iterations.

4.3 Graphical design principles

In developing the user interface for Image2Map and Text2Map, we adhered to various es-
tablished graphical design principles to ensure that our tools are functional, user-friendly,
and engaging. We made sure to maintain simplicity, having a consistent graphical layout,
and focusing on creating visually consistent products. In both tools, it was important
to use simple color schemes with uniform buttons and icons (Benyon, 2019, p. 291-294,
308).

To break down our choices further down, we made sure to have a clear hierarchy in
our tools in order to guide the user’s eyes to where we want them. For example, it
was important to make the map the central focus with toolbars or legends positioned as
secondary visual elements, as well as the use of alignment and repetition to ensure that
the tools are as easy and intuitive as possible for the user (Benyon, 2019, p. 296-298,
302, 596).

16

Simplifying GIS: Developing web-applications for Atlas

4.3.1 Design inspiration

The user interface for our two geospatial tools draws inspiration from the design principles
exemplified by the Atlas.co website. Atlas.co leverages a clean and intuitive interface that
prioritizes user-friendliness.

4.4 User interface
The designing of a user-friendly and intuitive interface is incredibly important for creating
successful web tools. This chapter outlines key principles, layout decisions, and special
features that guided the development of the interfaces in order to ensure that we meet
our project objectives.

4.4.1 Layout and Navigation

We chose to adopt relatively minimalist layouts for both Image2Map and Text2Map in
order to prioritize the core functions that we are developing for both projects. We also
drew some inspiration from the layout of Atlas’s existing web application (app.atlas.co).
For instance, Image2Map replicated the Atlas navbar almost one-to-one in order to create
higher cohesion between Image2Map and the Atlas App, thereby creating familiarity for
users when switching between the two (After we finished developing our tools, there have
since been some major changes on the Atlas Application, meaning the aspects mentioned
in this paragraph might not be accurate anymore, but they were at the time of development
and initial writing of this. For example, the aforementioned navbar being replaced by a
sidebar.). We also based our layouts heavily on Figma models (Appendix [B.1]) provided
to us, courtesy of Atlas CEO Fredrik Moger.

With our minimalist and intuitive layout, we attempted to lay the groundwork for
straightforward, uncomplicated navigation across both tools. The tasks the user is sup-
posed to be able to perform using our tools are also quite limited by design, further
aligning with making sure that it is easy to navigate the tools.

4.5 System development life cycle
In this section, we will discuss the system development life cycle, which entails details on
how we plan to succeed with both projects. We have divided our life cycle into a set of
stages: Where first stage is the pre-planning, second stage is the development, and the
last stage is deployment and publishing.

A good start for any big software project is to strategize. In our case, this involved
creating a plan that made room for agile thinking, which was done in the pre-sprint

17

https://app.atlas.co

Simplifying GIS: Developing web-applications for Atlas

[3.5.1]. This ensured that we had a structure to follow, which gave us a very general idea
of what to expect in the future. This was important as it ensured that we were all on
the same page when we started developing in the second stage.

The second stage was the longest stage in our development life cycle, as it is where we
developed our software. This stage, due to agile thinking, is broken down into smaller,
iterative loops. In our case, these loops consisted of Scrum sprint, plan, do, review, reflect,
and repeat (seen in next Section [4.5.1]). As previously stated, this is done multiple times
throughout the stage.

Transitioning to the last stage is relatively seamless, as the project develops and gradually
meets the requirements for deployment and initial release or pre-release, while sprints
continue in the background. The requirements for the last stage transposition to start
are that the projects have implemented an MVP with its core user workflow established.

4.5.1 Key Elements of Our Scrum Implementation

Our Scrum implementation entails a set of key components:
Sprint Planning: At the end of each Sprint, we conduct a planning meeting to define
the Sprint backlog (a prioritized list of tasks) and establish the Sprint goal (as explained
in Section [3.5.2]).
Daily Standups: We held brief daily meetings to synchronize progress, identify any
blockers, and align the team towards the Sprint goal (as explained in Section [3.5.3]) (see
Appendix [C] for notes).
Sprint Review: At the end of each Sprint, we reviewed the completed work, gathered
feedback, and demonstrated the functionality to stakeholders (as explained in Section
[3.5.5]).
Sprint Retrospective: We conducted retrospective meetings to reflect on the Sprint
process, identify areas for improvement, and adapt our practices continuously (as ex-
plained in Section [3.5.5]) (see Appendix [D] for notes).

4.5.2 Advantages of Scrum for Our Project

Scrum creates flexibility by accommodating evolving requirements and user feedback
throughout the development process. Additionally, the daily meetings facilitate constant
communication, providing collaboration and transparency. Lastly, the focus on working
software in each sprint provides tangible progress and allows for quick course correction
if needed, providing early value delivery.

18

Simplifying GIS: Developing web-applications for Atlas

4.6 System architecture
Our web applications both employ a well-structured front- and back-end architecture,
ensuring a clear separation between data processing and the user interface. This is also
beneficial for our development process, as it is easier for the developers to work on differ-
ent things at the same time without having to worry about fixing frequent merging issues.
We will continue this section by looking at the architecture of Image2Map, followed by
Text2Map.

4.6.1 Image2Map

Figure 8. Initial draft of Image2Map’s system architecture

Figure [8] is a representative system diagram that was developed during the pre-sprint
hackathon (mentioned in Section [3.5.1]). In this architecture, the back-end is a self-
contained unit responsible for the incoming requests from the front-end, which then
processes and delivers the results back. The front-end user interface (UI) manages user
interaction, including the processing of new Image/PDF through a sub unit that checks
what the image file type is, before making a request to the back-end for final processing
and necessary converting. The front-end also takes the processed information from the
back-end and visually displays it for the client/user.

This architecture, as well as the initial backlog, served as a useful initial starting point for
our development process. However, during our sprints, we discovered in sprint three that
Image2Map needed data storage between requests. A change in the system architecture
proved necessary in order to implement this. This process started to be implemented by
the end of sprint three by pull-request #29 (Group 21 & The Atlas Repository, 2024).

The new architecture can be seen in Figure [9]. As this was a redesign and developed
further into the project’s life-cycle, the figure has some level of added precision and more
outlined core components in the diagram. The new outer Heroku layer will be explored
in more detail in Section [4.10.2]. The external and semi-internal details, described in the
figure as Add-ons, are outlined in Appendix [A.4.7] and [A.4.8]. These are third-party
services that were linked with their respective connections.

19

Simplifying GIS: Developing web-applications for Atlas

Figure 9. Final Image2Map system architecture

Another benefit of the new architecture, Figure [9], is how it clearly defines all pages
in the Next app front-end. It also highlights how the application navigates and utilizes
different components, how these components are dependent on each other, and which
components communicate with external sources or our FastAPI back-end. Overall, this
new system architecture model is more aligned with the current and final state of the
system, and display in detail how the project is setup as a whole, including all its integral
parts.

4.6.2 Text2Map

Figure 10. Final Text2Map system architecture

Figure [10] depicts the final architecture of the Text2Map application, as well as highlight-
ing how the different parts and processes are connected. The figure also illustrates the
flow of connections through the application. Similarly to the Image2Map application,
the rough structure of the architecture was developed during the pre-sprint planning,
and was later updated throughout the development process as different requirements
and limitations were made apparent. As mentioned in the previous Section [2.1], the
indented functionality of the Text2Map application is to visualize the placement of lo-
cations around the world through text or data that a user inputs. To accomplish this,

20

Simplifying GIS: Developing web-applications for Atlas

the application is required to process the user input in an efficient and consistent way,
and gather the necessary geodata for displaying the requested information. This is done
through communication with external API’s as seen in the Figure [10]. These technologies
and processes will be explored in further detail throughout the chapter.

4.7 Back-end

Now that we have gotten a general understanding of how both projects are built up
by looking at their system architecture, we will in this section delve deeper into the
technicalities of the back-ends, starting with the similarities between Image2Map and
Text2Map.

Both projects utilize the Python programming language as the foundation for the back-
ends. Python is known for its simplicity, readability, and extensive libraries (Python
Software Foundation, 2023), which makes it suitable for various applications, such as
data analysis, machine learning, and working with geospatial data. Due to the large
amount of third-party packages available (such as one for interacting with the OpenAI
API for example), it became possible for both teams to develop prototypes quickly, which
then slowly developed into streamlined and efficient back-ends.

In order to utilize the back-end as an API, it proved necessary to operate it as a server.
We chose to utilize Uvicorn (defined further in Appendix [A.3.2.3]), which is a server
interface for Python that implements an important specification named ASGI (Asyn-
chronous Server Gateway Interface). By implementing ASGI, we can run an application
on the server asynchronously (“Uvicorn”, n.d.), allowing us to receive multiple requests
simultaneously. This in turn will speed up the processing of a request and will provide a
better safety net in case of a slow process.

For interaction across the back-end and front-end, both projects utilize the FastAPI
framework (defined further in Appendix [A.3.1]). Utilizing FastAPI, the individual
projects can create specialized "endpoints", which acts as locations the front-end can
request, either with or without data, and get something in return. In other words, the
API is responsible for taking requests from the front-end and routing them to code in
the back-end. An example can be Text2Map’s "/newChat" endpoint, which instructs the
back-end to send a message to a custom ChatGPT assistant, which then gets a JSON
response in return and passes it back through the API to the front-end.

Another common utility is Docker, which is utilized for containerized deployment and
service orchestration. This ensures that all necessary components run smoothly together.
Docker containers isolate the application, making it easier to deploy in different environ-
ments without conflicts (Docker, 2023). Additionally, Docker assists in the orchestration
of multiple containers, which can be essential for running complex systems composed of
multiple services (Docker, 2023).

21

Simplifying GIS: Developing web-applications for Atlas

Now that we have had a quick look at the common technologies of the back-ends, let us
delve deeper into the specifics of each project, starting with Image2Map.

4.7.1 Image2Map

The Image2Map back-end is responsible for managing project data, storing and inter-
acting with files, georeferencing processes, and general image processing. However, as
mentioned in Section [4.6.1], it was originally only intended to request, process, and re-
spond. Due to the necessity of handling and storing files in the back-end, the architecture
was redesigned to store and keep track of files, as well as keeping track of and storing
data related to user projects.

This means that the back-end is composed of several modules that utilize various Python
libraries and packages. The arguably most important module, the "core" module, is
responsible for managing the projects, the GCPs of the projects, and the georeferencing
process itself. This module is heavily dependent on two external packages. The first
package is named rasterio (defined further in Appendix [A.3.2.4]), which is a package
specifically made for working with geospatial raster data and is the package that allows
us to georeference an image using 3 or more GCPs. The second package is named rio_tiler
(Appendix [A.3.2.7]), and is utilized to split georeferenced images into image tiles. The
tiles are then returned to the front-end to be displayed within the Overlay-section of the
application.

Additionally, this core module also interacts with other modules for file storage and data
storage. These modules can be seen as "connecting modules", which means that they are
used to allow storing data or files on various services. For example, the back-end, as it
is currently, allows for a local database for projects and local storage for files, as well
as third-party services such as PostgreSQL (Appendix [A.4.8]) for data and Amazon S3
Buckets (Appendix [A.4.7]) for files, or any combination of these.

Lastly, another important module is used to convert and modify files. This module
mainly provides functions for converting PDF files and various image types to PNG
files, as well as for cropping the converted PNG files. This module mostly utilizes two
packages; Pillow (Appendix [A.3.2.2]), which is used for converting and modifying image
files, and pdf2image (Appendix [A.3.2.6]), which is utilized to convert a page from a
PDF file to an image. These are used in preparation for the georeferencing process, as
the rest of the back-end expects to only interact with PNG files pre-reference and TIFF
files post-reference.

4.7.2 Text2Map

The Text2Map back-end depends on a small amount of essential components to run. One
of these is the OpenAI Assistant called ChatGPT (defined in Appendix [A.4.4]), which

22

Simplifying GIS: Developing web-applications for Atlas

the application is currently heavily dependent on. Text2Map currently uses two custom
OpenAI Assistants, one for answering questions and extracting mentioned locations, and
another that only extracts locations. The custom assistants were created to maximize
consistency and reliability in the responses they provide, which are returned back to the
back-end as formatted JSON files containing the necessary information and the locations.

The location extraction process was previously left to a Python add-on named Spacy.
However, this solution was found to be inconsistent at times, in addition to being a large
package that made the file size of the back-end application noticeably larger. Spacy was
therefore dropped in favor of modifying the existing assistant to replace this functionality,
as well as creating a secondary assistant with the sole purpose of returning location data
in a specific format.

Another essential component on which the application relies is the Bing Maps REST
Services (defined in Appendix [A.4.5]), which is used to translate text or addresses into
coordinates. By converting the locations to coordinates, it was possible to place exact
markers on the map. Similarly, the application also utilizes a custom geoboundaries
API that delivers the boundaries, or outlines, of a given location and is used to better
highlight and display the boundaries of locations on the map. More about this API can
be read in Appendix [A.4.2].

4.8 Front-end
In this front-end section, we will discuss the solutions we chose to implement for both
projects, looking at the functionalities and extensions, including their connected compo-
nents.

4.8.1 Image2Map

The front-end provides a user-friendly interface for interacting with our georeferencing
system. It lets users easily upload an image or PDF to the app, thanks to a custom
component created to select a specific page in a PDF, that uses react-pdf (see Appendix
[A.2.6]). In the main part of the application provide interfaces for different toolbars, live
maps, and a viewer of the uploaded image or PDF. The team has also developed an
intuitive way to accurately place points on both the map and image/PDF.

We rely on few, but important, extensions to make our interface more intuitive and
reliable. We utilize Mapbox to supply the interactive map that is displayed on the
interface. The interactive map is utilized to manipulate and show your georeferenced
image or PDF. These images and PDFs can also be cropped using the react-image-crop
extension. Additionally, since the PDF is converted to an image when uploaded, we only
require this extension for this specific task. (Example Figure illustration [11])

23

Simplifying GIS: Developing web-applications for Atlas

We also wanted our system to be as modular as possible, letting users manage the area
and/or size of some of our popup windows, such as the coordinate list. We make this
possible by utilizing a mix of the allotment and react-draggable packages for React (Ap-
pendix [A.2.5] & [A.2.7]).

Figure 11. Screen with uploaded photo and some markers placed

4.8.2 Text2Map

The Text2Map interface is designed to be easily understandable. It has interfaces ranging
from our initial view, which is a page that lets users decide whether they want to speak
with an assistant or whether they want to input data/text. From this point, users are
presented our main interfaces, which include a chat view on the left and an interactive
map on the right (An example figure is illustrated at [12]).

Our front-end relies on the same MapBox dependencies as Image2Map, as well as allot-
ment, but does not depend on additional front-end dependencies.

Figure 12. Screen with generated map and some text information
24

Simplifying GIS: Developing web-applications for Atlas

4.9 API
Application Programming Interfaces (APIs) serve as foundational components in mod-
ern software architecture. APIs function as structured communication contracts, enabling
disparate software components and services to seamlessly exchange data and functionali-
ties (Appendix [A.3.1]). This modular approach offers several benefits within the context
of software development and research. In the next sections, we will discuss what APIs
entail and our choice in terms of implementing APIs.

4.9.1 Encapsulation

Encapsulation is a big reason as to why we decided to develop using APIs. By encapsulat-
ing functions behind a set of interface specifications, APIs allow us to treat components
or services as black boxes, which enhances re-usability in systems. It also makes individ-
ual functions much more scaleable, as the back-end can be independently modified from
our front-end as long as the API contract remains the same (Tuychiev, 2024). APIs pro-
vide a layer of abstraction over implementation details. Developers can consume services
offered by existing APIs without having to understand their underlying complexities.

4.9.2 FastAPI & Performance

FastAPI is a modern web framework tailor-made for the creation of APIs in Python and
is built with performance in mind (FastAPI, 2024). It leverages asynchronous models and
the efficiency of tools such as Starlette and Pydantic. These are both tools for building
asynchronous web services and the most widely used data validation tool for Python
(Appendix [A.3.1]).

Figure 13. Documentation Page for

Text2Map with one of the drop down opened

This makes the performance comparable
to frameworks like Node.js and Go. It is
also user-friendly as its emphasis is on de-
veloper experience, where it aims to mini-
mize the time required to build and deploy
APIs. Additionally, the API is very robust
and easily maintainable as it has built-in
type hints and automatic data validation,
which contribute to reducing overall errors
and maintaining code integrity.

Additionally, the FastAPI framework has
the ability to automatically create a docu-
mentation page (Figure [13]) for all API
points present in the back-end, through
the use of an included web user interface called Swagger UI (Ramírez, n.d.).

25

Simplifying GIS: Developing web-applications for Atlas

These are some of the reasons we chose to write our whole back-end in FastAPI. More
importantly, these are also the same libraries that Atlas uses, hence why it was preferred
by both teams. Using something familiar to Atlas could prove beneficial in the long run.

4.9.3 External APIs

Text2Map relied on external APIs outside of the application in order to function, one
of these is the Geo-coding API that Bing offers [A.4.5]. We utilized this to acquire
coordinates and additional information on search locations. As an example, if the text
"New York" is provided, the Bing API will return the point coordinates for New York
in the United States, in addition to defining values to determine other aspects of the
location. This API is crucial, as we need this information for marking the point on the
generated map, in addition to aid in an additional process. We also have a custom built
external API called GeoB-API. This API works by taking in a country’s ISO3 code by
itself to return the boundaries of a country. Alternatively, the API can be passed a State
or City, along with the country’s ISO3 code, and return the boundaries for these as well.
All boundaries are returned as a geoJson and the boundaries are created and maintained
by geoboundaries.org.

4.10 Continuous integration and delivery

Adding on to our understanding of how the projects are set up, we are going to discuss
how we applied continuous integration and delivery in the following section. The term
continuous integration, also known as CI, is a development practice that, in essence, is
rapid updates of code to a central branch or branches in a shared source code repository.
With each of these updates, an automatic process of automated tests is started; further-
more, kicking off the build process (GitLab, 2024b). Using CI increases code quality; the
scope of quality is explored in further detail in Chapter [5.2.3].

Continuous delivery, or CD, is a practice that builds on CI in the practical term. It
continues after CI is completed, where it implements automation in the infrastructure
provisioning and application release process. Using CD, the software is built in a way
that enables deployment to production at any time. With this in mind, implementing
continuous deployment would be ideal, which is the automated process of deploying
applications (GitLab, 2024b).

Encompassing CI, CD and continuous deployment in a streamlined process, utilizing
DevOps or a site reliability engineering approach, we have the concept of a CI/CD
pipeline (GitLab, 2024a). In the next subsection, we are going to explore how we have
integrated these into our projects.

26

https://geoboundaries.org

Simplifying GIS: Developing web-applications for Atlas

4.10.1 Use of pipelines in the projects

Both projects implemented the practice of CI/CD pipelines through use of GitHub Ac-
tions, also known as actions, which is a platform for continuous CI/CD that can be set
up to be a pipeline or just CI/CD. Expanding on this fact, it enables the automation of
other repository processes (GitHub, 2024). Our reason for choosing actions is that we use
GitHub as our cloud source control (Section [3.1.3]), with an action’s features covering
our need in terms of automation and deployment. The option of using a third party tool,
with less integration to the platform, was not desirable.

Using actions, we have been able to implement our pipeline; from code checks, to test-
building the application, and then building the application for production, before finally
deploying. In the following sections, we will explore the action(s) and highlight the small
differences in the action Image2Map uses contrary to Text2Map’s action, hence their
similarities.

The action start parameters are set with triggers that comply with CI / CD. After
defining the triggers, we define the jobs, which are the work, or rather the pipeline itself.
Furthermore, each job is divided into steps. A step is generally where stages of the
CI/CD process are defined, for example, a build test. Everything related to this stage
would either be one or two steps.

Given the projects Mono-repository approach, which means that the projects have both
the front-end and back-end in the same repository, the Action is set up with two jobs;
one for each of the apps. These are run in parallel and do not interfere with the success
of each other.

In both projects’ actions, the jobs start by checking out the repository from the state in
which the parameters were triggered. The next step is the creation of an ".env". This file
contains certain values that the projects need to run. These values are stored in GitHub
secrets, where actions retrieve and utilize these securely. An example of a value is the
access token for MapBox used in the front-end. In the step of creating the ".env" file,
there are project- and app-specific values which are securely created.

The final step in the jobs is a more complex process. GitHub actions provides the
opportunity to import an action, then utilize it in a step, as well as providing it with
configurable settings. We have used this feature to import and use a third-party action;
this action builds a Docker container, pushes the container to the deployed environment,
and tells it to release.

What we have access to configure with this third-party action is what it builds (the
application), the back/front-end, the target location of deployment, and the contents of
the Docker-build file (known as Dockerfile). The building process of the Docker container
is a central part to the pipeline, where we have the ability to use command-line interface
tools (CLI-tools). During the build process in the Dockerfile, we utilize these tools to
automate code checks for stylistic and programmatic errors. This process is known as

27

Simplifying GIS: Developing web-applications for Atlas

linting and makes it a part of the CI practice in the pipeline.

In terms of completion of pipeline integration, the projects have utilized nearly identical
CI/CD pipelines. The differences are app and project-specific environment values and
app differences for building with the Dockerfile. Next we are going to look at our choice
of deployment target, release, and hosting platform.

4.10.2 Deployed application, Heroku

When deciding on a deployment-target/hosting of the applications, a meeting with a
representative from Atlas.co was arranged during sprint eight (see Appendix [C]). During
this meeting, Atlas suggested the utilization of Heroku regarding hosting, including some
examples.

Heroku is a hosting platform, and, according to Heroku themselves, is "a cloud platform
that lets companies build, deliver, monitor and scale apps — we’re the fastest way to go
from idea to URL, bypassing all those infrastructure headaches." (Heroku, 2024a).

When we first started looking into hosting the application, we encountered difficulties in
implementing and utilizing Heroku. This caused us to look for other alternatives that
would still fit our needs. It needed to be economically viable, easily integrable, and able to
host a Docker container. Examples include Fly.io, Google Cloud Run, and Amazon Cloud.
Additionally, we looked into exchanging Docker for Kubernetes to have more alternatives,
but implementing this proved to be even more complex and was quickly discarded. The
other alternatives were discarded after some testing and changes. Through substantial
testing, we managed to make it operational on Heroku, which had the added benefit of
being familiar to Atlas.

On Heroku, both projects have been divided into two applications (as previously illus-
trated in Figures [9] & [10]); A back-end application and a front-end application, which
made the total number of applications on Heroku four. When deploying on Heroku and
releasing the apps, they are running on "dynos", which on Heroku are separated, virtually
run containers. This provides an optimal environment for an application (Heroku, 2023).
There are different tiers of dynos, where our apps are running on the tier’s Basic and
Standard-1x/2x. The first difference between the tiers is the larger RAM capacity and
computing power that the dyno is able to provide. The second is the auto-scalability
feature, which we currently do not utilize. Other support features were not needed or
prioritized in terms of research in the current stage of the projects.

5 Quality Control
Implementing and managing a project does not automatically cause a project to be of
high quality and standard; a strategy has to be in place. In the following sections, we

28

Simplifying GIS: Developing web-applications for Atlas

will define and argue for how we secured a project of high quality.

5.1 Defining quality
With our understanding of both how we managed the projects and how we implemented
the projects, we are going to explore why and how we achieved good quality in both
aspects. Ensuring good quality could make or break a project, hence the importance of
this specific section.

An important distinction to make is the difference between Quality Assurance and Qual-
ity Control. In its simplest form, Quality Control is the act of securing good quality, and
Quality Assurance is the plan of securing good quality (Indeed Editorial Team, 2023b).

5.1.1 Process Quality / Quality assurance

As mentioned, Quality Assurance is the strategy for ensuring high quality. This involves
various tools used in planning and the processes that determine the product’s quality (In-
deed Editorial Team, 2024b). Quality also involves establishing standards for processes,
which are applied throughout the project and can be continuously measured against these
standards (March, 2022). In our case, we utilized different tools and processes to assure
optimal quality throughout the project.

5.1.2 Quality control

As mentioned, quality control is the inspection phase following quality assurance. Its
essence is a set of testing procedures that verify or control the product. March sug-
gests that such procedures include batch inspection, product sampling, validation testing,
laboratory testing, and software testing (March, 2022).

Product inspection and product sampling proved less significant in terms of our project.
Instead, software testing would prove to be crucial. Software testing, both internally
and externally, provided a control factor that allowed us to validate the progress of the
projects (March, 2022).

5.1.3 Code Quality

Code quality is the measurement of code, program, or software compared to a set of
predetermined values. Essentially, high-quality code can be recognized by its ease of
interpretation and the amount of documentation. In addition, high-quality code fulfills
a set of parameters, where such parameters could include: Functional, Consistent, Easy

29

Simplifying GIS: Developing web-applications for Atlas

to understand, Meets clients’ needs, Testable, Reusable, Free of bugs and errors, Secure,
Well documented (Indeed Editorial Team, 2024a).

Following these parameters results in various positive affects. Readability eases new
developers’ experience when building on to the code, program, or software. In other
words, it makes it easier to improve the existing code (Indeed Editorial Team, 2024a).
Transferability entails the development of code that can be easily transferred to a new
product owner where minimal to no changes must be made for the code to be utilized
(Indeed Editorial Team, 2024a). Transferability is an essential parameter in a project
where it’s goal is to be handed over or transferred.

5.1.4 Product Quality

Product quality in its essence is determined by how well customers’ needs are satisfied.
In addition to serving its intended purpose and meeting industry requirements (Indeed
Editorial Team, 2023a). There are many factors that determine the success of a product,
both in the customer aspects and in the products themselves. The Indeed Editorial Team
highlights a set of perspectives that can determine product quality, and these perspec-
tives are: Performance and intended function, Reliability of the product within a specific
time frame, Conformity to product specifications, Product durability and lifespan, Prod-
uct serviceability, Physical features of the product, Customers’ perception of the product
(Indeed Editorial Team, 2023a).

Fulfilling these perspectives secures a project of high quality. In its simplest form, if a
customer is not satisfied and does not use the product, its very existence disappears. An
easily determined factor is the intended purpose of the product; if a product satisfies its
intended purpose in every aspect, it is a sign of a high quality product (Indeed Editorial
Team, 2023a).

5.2 Implementing quality
With our newfound understanding of quality definitions, we will argue how we secured
quality within our projects in the following sections.

5.2.1 Process Quality / Quality assurance

We decided early on to adopt Trello for planning [3.1.1]. This led us to be extremely
well-structured and has aides us in keeping the quality of the development process up
to modern standards. Since we run such a fast-paced Agile work environment, it has
been crucial for us to have tools to complement this, and Trello has been more than
satisfactory for our needs.

30

Simplifying GIS: Developing web-applications for Atlas

Figure 14. Discord voice

channels

Working in an Agile environment and having daily Scrum
meetings in the morning has helped greatly in assuring that
all the developers and managers are keeping up the quality
of our projects. Upon completing the daily meetings, both
two teams decide whether they want to work for themselves
or together. This assures that both teams can easily ask
each other help, if needed.

As we have an online work environment, we use Discord (see
Figure [14]) to emulate a real-life work environment. Sim-
ulating this environment ensures that we can always reach
each other if needed. Quality can suffer if we do not let team
members have some options in working conditions, and as
mentioned in Section [3.1.2] we have several rooms for dif-
ferent needs. This is shown in practice in Figure [14].

5.2.2 Quality control

With the proper groundwork through quality assurance and process, it is essential to
act on the plans and strategies laid down. We decided early on that continuous manual
testing internally in the groups was an essential factor for our success, hence why we
underwent testing of the projects whenever a change or new feature was added. By
doing so, we believed we would save time later in the process by having already validated
large parts of the code, where only new parts needed to undergo testing. This type of
control and validation is what we believe contributes to good quality.

External testing is a factor we acknowledged early on that is crucial for good quality
within a project. Though, time did not allow this to happen as early as we intended. In
the later stages, we underwent external testing by utilizing our advisors connections, and
this testing highlighted unforeseen complications that required addressing. Even with
the late external testing, we managed to implement and/or fix smaller features and bugs.
In an ideal world, we would have started external testing sooner to maximize the input
which could lead to a better product, hence enhancing quality.

5.2.3 Code Quality

Quality coding involves various important aspects to guarantee the software’s depend-
ability, ease of maintenance, and effectiveness.

Readability is an important aspect as it ensures that other developers who wish to further
develop the software can clearly understand the code base. This includes clear variable
names, consistent formatting, and proper documentation.

31

Simplifying GIS: Developing web-applications for Atlas

Additionally, it is important that the code base is easily expandable, enabling it to handle
feature expansions and larger user loads. We did this by making our code as adaptable
and reusable as possible. An example of this could be the use of abstract classes used
for storage in Image2Map; the abstract classes made it easy to implement various types
of storage handlers with minimal effort.

Figure 15. An abstract class method named "saveFile"

All complex and large functions are developed with this in mind, as it is important that we
keep things modular and well-structured. In turn, easing the development environment
for future developers to add new features and functionalities. This is also crucial for the
long-term success of the projects and its later potential implementation within Atlas’s
main app. Creating reusable functions and components also greatly help in minimizing
redundancy and promoting efficiency.

As both projects have been developed with the intent of learning, we have not created any
automated unit tests for our projects, as an attempt to become even more familiar with
our code and how it is coupled. However, we have been actively testing out the products
internally by trying to break them, stress testing, and some smaller user tests. Although,
since we have focused on making readable and well-structured functions, adding such
unit tests later on would be relatively easy for any future developers to integrate.

Utilizing a version control system, such as Git, has proven essential for tracking changes,
collaborating between developers, and reverting to previous versions if necessary, as de-
tailed in Section [3.1.3]. In turn, this assists us in ensuring code integrity and a smooth
development cycle through being able to continually compare development branches, as
well as providing a feedback loop where Atlas can continually monitor progress. This
is crucial for our work, especially since we are working in a remote environment with
occasionally different time zones and several developers working on the same project in
real time. More importantly, this tool allows us to secure quality control through secure
repository hosting and proper validation of our code through peer reviews.

We also implemented Github Actions, as mentioned in Section [4.10.1], which easily
enabled us to test and publish our code base to the cloud utilizing Heroku. This ensured
functional code when it reached production, as well as preventing broken branches being
published.

32

Simplifying GIS: Developing web-applications for Atlas

5.2.4 Product Quality

We ensured good product quality on both projects by ensuring our functions and third-
party APIs perform well. This includes researching and making sure we are using the
fastest and most reliable external APIs. Our own back-end also has to be reliable and
optimized so that the product the users experience feel snappy and reliable. We ac-
complished this by testing our project frequently, and always looking for better ways of
ensuring the efficiency and reliability of our projects.

The teams have been following the few specifications Atlas requested since the beginning,
as well as ensured our projects kept up with their specifications by doing weekly meetings
with the Atlas team. This ensured that even if we added features that seemed fit, it would
always get the final approval from Atlas before we finalized the features.

Our two projects are built on a modern tech stack, which should withstand having to
be rebuilt or maintained often. As we have made two web applications that are funda-
mentally different, both have different durability and lifespan ratings. Image2Map has
the advantage of depending on few external APIs compared to Text2Map, which would
not be operational without its main contributor OpenAI. However, even though this is a
possibility to be a lifespan limit, we do not see an end to the external API anytime soon.

6 Final Product
This chapter focuses on the finalized versions of the products both groups worked on,
and covers the functionality that was added, the architecture of both projects, as well as
ending with suggestions and thoughts for future developments on both projects. However,
before we dive into the final products, let us recap the process of how they transpired,
from the start of the project to the end, by summarizing the development timeline.

6.1 Summary of development timeline
This section encompasses a summary of the development timeline during the development
of Image2Map and Text2Map, and is based on our Scrum daily notes (as can be seen in
Appendix [C]).

Sprints 1 to 4 were characterized by slow developments, due to a high focus on individual
learning of the technologies, frameworks, and programming languages utilized. Progress
on the applications was still made; both applications got an early UI design based on
the Figma sketches provided, a rough back-end running, and a common-designed startup
script. Image2Map managed the first file conversions and started the research process
in terms of implementing georeferencing for the back-end, while Text2Map got the first
coordinates showing on the map, and after started using an API to retrieve GeoJSONs

33

Simplifying GIS: Developing web-applications for Atlas

for retrieving and displaying outlines of countries on the map.

After this, things started to speed up. During sprints 5 to 7, it was clear that the teams
were getting more and more comfortable with the technologies, the work hours, and the
collaboration. The way code was produced, reviewed, and added to the "main" code-base
was clearly defined at this point, and both applications were clearly mimicking their
original mockups. Many functions were written and implemented in both projects, and
the finished parts were further improved and polished. Already at sprint 5, the back-end
portion of the initial georeferencing functionality of Image2Map was implemented, and
Text2Map was further refining displaying information on the map, such as adding states
and cities.

From there, the development process continued to progress at a high pace. Image2Map’s
group redesigned landing pages, cropping, map markers, improved image transformation,
and a major refactor of the back-end, as well as a rudimentary version of the georefer-
encing working in the front-end. Text2Map further refined their AI inputs/outputs, and
how and what data was displayed on the map, with a focus on making sure that the
data was accurate (such as Victoria being either the Australian state or the Canadian
city based on context). Additionally, during this time-frame, both applications got dark
modes and a lot of quality-of-life updates and bug fixes.

Sprints 8 through 10 was the period in which both tools functionality was nearing a
testable state and getting ready to be hosted. During this time, both projects created
Docker files and planned deployment to Heroku. For Image2Map the overlay view was
introduced using tile-serving, a "sniperscope" added to help users get exact marker place-
ments, and some mobile work was done. Text2Map got some fundamental features such
as updating and deleting markers for cities, states, etc. In addition, several quality-of-life
features were introduced, such as better markers and better responses.

At the beginning of sprint 11 both projects went live for testing, and both projects
received feedback from a testing session at Atlas. This means that the last sprints, 12 to
14, were defined by heavy bug fixing, quality-of-life updates, implementation of feedback
features, and preparation for ending and handing over the project.

For Image2Map, this included adding a coordinates table where the user can delete
markers, fixing a pesky bug (images would duplicate in the back-end and take up a lot of
space), a user guide, and making the application generally stable and less prone to crash.
Additionally, multiple storage alternatives were added and tested (database provider and
storage provider alternatives to local storage), which in turn required additional bugfixes
that were previously undiscovered.

Text2Map also had some larger changes during this time, and a decision was made to
change the way locations were interpreted; rather than having the AI assistant respond
with text and then use another LLM to interpret locations, the AI assistant would provide
answers in a specific format. This greatly increased accuracy and made sure that problems
like the "Victoria-conundrum" were avoided.

34

Simplifying GIS: Developing web-applications for Atlas

The rest of the available time before the code freeze date was spent on minimizing bugs,
writing documentation, and generally preparing for handing over the projects to Atlas,
such as making sure that the code that was being handed over would be understandable,
readable, and usable. Sprint 14 was completed with the projects being successfully
handed over to Atlas over a digital meeting, giving a demo and answering any questions
they had.

Now that we have described the development process of the applications, we can move
on to exploring the final products.

6.2 Functionality
Functionality in its essence entails specifically how an application functions. In this
section, we will discuss the final functionalities within both projects.

6.2.1 Image2Map

Figure 16. Split View after uploading and placed a marker on the map

When the user first visits Image2Map, they are greeted with a landing page. It states
some information about what you can do with the web application, with a button where
you can upload a picture to be used for georeferencing. If a PDF file is selected when
uploading, the user will be redirected to a page where they can select a specific page of
the document to be turned into a picture for further georeferencing. After the image
has been uploaded, the user is redirected to the "editor". Here, the user can do several
things, such as being able to crop the image further if they need to use a more narrowed
version of the picture, examples being cropping out all the text from a page of a PDF
document.

Once the user is satisfied with the selected picture, they can place a pair of markers with
one placed on the map (example figure [16]) and the other on the uploaded picture. The

35

Simplifying GIS: Developing web-applications for Atlas

pair is then added to the coordinate list, and the next pair is ready to be added. In order
to georeference the image, there have to be a minimum of three pairs. Once there are at
least three pairs, the image is georeferenced and makes the overlay view accessible.

In the overlay view, you can view the georeferenced image and see how it has been skewed
and transformed according to the map (but not warped or stretched). The user is able
to toggle between street maps and satellite maps, and adjust the opacity with the slider
at the top.

In addition, the user can download the map as a Geo-TIFF when finished. This file can
be used further with either Atlas’s systems or with the use of another GIS application.
Unfortunately, it is not possible to download a copy of the GCPs.

Further figures detailing the sections of Image2Map described above can be found in
Appendix [B.6.1].

6.2.2 Text2Map

Figure 17. Split View after asking Text2Map Chat Where bananas are grown.

When the user first visits Text2Map, they are introduced to two options. They can either
choose to use a query, utilizing AI to answer, or a CSV-styled list to generate a map.
These two are quite different, despite resulting in a map with highlighted locations.

A user can type in text in their own dedicated variations of the Text2Map application.
The user input is then transformed into an interactive map. For example, if the user
inputs "London", it will generate a map highlighting London in a split view, where the
text you input on the left, and a map on the right. The places mentioned will also be
shown as buttons in the text view, where the user can easily click on it and go to the
location.

Utilizing ChatGPT lets users type in short questions, such as "Where are bananas grown?"
(example Figure [17]), where it will generate text, then pass the response through the

36

Simplifying GIS: Developing web-applications for Atlas

application processing. Once the processing is done, the user is greeted by the same split
view as when providing CSV-styled lists, but with an additional AI generated response
in the text view.

The user can then choose to ask the AI more questions to enhance or extend the response
or add more locations through editing the text box in the sidebar. When done, the user
can then download the generated map’s geographical data in GeoJSON format, either
with included boundaries or boundaries and markers.

Further figures detailing the sections of Text2Map described above can be found in Ap-
pendix [B.6.2].

6.3 Architecture
The final project architecture in both projects have had minimal to no changes from their
respective figures, Figure [9] and Figure [10], seen in Section [4.6].

6.4 Further development
While the final product has been reached in our case, a project is "never" done. In this
section, we will reflect and discuss on the groundwork that has been laid and the potential
for further development.

6.4.1 Image2Map
Throughout the project, we succeeded in implementing most of the features Atlas in-
tended us to implement; Mainly creating a solution which simplifies the process of geo-
referencing images and PDFs. The complete lists of features, with additional details for
further development, can be found in Appendix [E]. Some of these features that were left
out of the final product due to time constraints are the following:

Suggested points would make it so whenever an image is initially georeferenced, the web
application would recommend the placement for the next pair of markers. This would
greatly improve the user experience and the learning curve for new users of this kind of
software. However, this might prove to be more challenging than anticipated, since it
would either require the use of artificial intelligence or advanced algorithms to achieve
this at a level we aim to achieve.

Multiple georeferenced images would provide the opportunity to have, or work on, several
georeferenced maps. This would contribute to increasing the utility of the tool, by letting
the user upload several images and display them in overlay view simultaneously. While
not as difficult, it would still require a large rework of both the front- and back-end.

37

Simplifying GIS: Developing web-applications for Atlas

Point error calculation calculates how far off your original points were from their real
positions. This was supposed to be done when a user adds more points to a map for
improved accuracy, and they would be able to see a calculation of how far off their original
marker placements were, compared to the re-referenced points on the map. This would
let users improve the accuracy of their georeferencing even further.

Image rotation would simply provide the ability to rotate the uploaded image, which may
assist with georeferencing if the image is at a weird rotation. This should be a relatively
easy feature to add and should not require a lot of rework.

6.4.2 Text2Map

Text2Map is built on utilizing some of the cutting edge technology when it comes to
Generative AI. We have built a Web App that is easily, hopefully, understandable for
anyone where they can pick this up and use it as it is today. An extensive list of future
improvements can be found in Appendix [F]. Regardless, there are several features both
the user and developer can benefit from implementing in the future:

Change of Generative AI Model, as this software heavily relies on Generative AI and which
is always changing and under development, hence the importance of continuous research
around the the idea of using different Generative AI models like Gemini, Llama or a
different versions of GPT. This is difficult and time consuming to modify and implement,
as it requires a lot of research, in turn, rising expenses. However Prompt Engineering
is cheaper. Further research into Assistant prompts needs to be constantly reevaluated.
Prompt engineering is just as important as developing the software and will lead most
likely lead to better responses from the AI, which would directly improve the general
user experience and the reliability of the answers it provides. Comparing to changing the
generative AI model, it does require a lot of time, trial and error.

CSV Feature is the lacking part of the project, whereas the ChatGPT part of the app is
the most fully fledged one. CSV needs to be better implemented, judging by its infant
stage. Where as of now, it is limited to extracting locations from the text without giving
any further explanation or generating any extra information related to it. We want the
CSV2M to be able to give the user more then just the locations. However, this requires
extensive work, where we acknowledge its difficulty.

Embed Maps is also a feature both Atlas and group 22 aimed to add to the final product.
Though, this ended up being difficult, where we lacked the time to implement it. This
feature would let users easily embed their generated maps into their own websites or
applications.

Further explanation on how to achieve these candidates can be found at the GitHub
Repository (Group 22 & The Atlas Repository, 2024).

38

Simplifying GIS: Developing web-applications for Atlas

7 Reflection
Adding onto our final product, we are going to to reflect on both positive and negative
aspects of both projects. Particularly important was the research and testing of the
various tools and extensions with which we experimented.

7.1 Summary of Project Goals and Objectives

The two groups, and on a larger scale the team as a whole, set out to develop two
tools with the aim of shaking up the GIS world by developing simple-to-use web-based
tools for georeferencing (Image2Map) and visualizing geographic data from textual inputs
(Text2Map). We also strived to manage the projects in a professional manner, mirroring
what we might face in future work-life. Reflecting on our main goals, we can affirm that
we have met most of our initial goals and objectives, found in Section [2.4].

Image2Map has somewhat successfully been developed into a quick and easy-to-use web
tool to georeference quickly and easily, with the functions it was originally intended to
have. However, there are some missing functions that would have been desired, such as
retaining geodata when uploading a GeoTIFF, additional transformation methods, as
well as downloading of GCPs.

With Text2Map the goal of creating an online tool for visualizing data and text as
a digital map was mostly accomplished as well, with the caveat of not being able to
upload files (CSV being the main one). Instead, the user always has to type or paste
in their data/query. This was due to time constraints and prioritizing optimizing the
"Ask ChatGPT" function. Next, we reflect on the methodology we used throughout the
project.

7.2 Methodology and Tools

In our project, we used a mix of Trello, Scrum, and Discord to manage and assign tasks
within our two groups. This combination greatly improved our productivity by keeping
us all on track with a common goal.

Trello helped manage our work by dividing it into smaller tasks, making it easy for us
to take a card and assign it to one another, as expanded upon in Section [3.1]. Each
card could be assigned to a member with short or long descriptions of the tasks and
comments if necessary. Categorizing tasks with different labels helped determine the
type of task and estimate the time required. Over time, however, the two groups began
to show minor differences in how they used the Trello board. To avoid inconsistencies,
restructuring could have ensured that the boards remained similar.

39

Simplifying GIS: Developing web-applications for Atlas

Scrum, as detailed in Section [3.2], kept everyone up to date with the activities of the
teams and individual members. It facilitated easier requests for help when tasks proved
more difficult than initially planned. These meetings promoted communication within
the teams, especially when faced with development challenges.

Discord was an excellent solution for remote work. Since Atlas is based in Oslo, the
group’s institution is in Kristiansand, and some members live in other places in Agder,
we needed a reliable solution for daily Scrum meetings and general communication. We
configured our server to reflect real-life offices, providing communication channels for
open discussions and small talk. This setup contributed greatly to our project’s success
by promoting a healthy work cycle and individual work ethic. Our setup was also tested
when one developer worked from Australia, proving that our remote work setup was
effective without a major impact on our productivity.

Although this approach was largely successful, we did encounter some challenges. Ini-
tially, many group members showed up tired for early morning meetings, wasting valuable
time getting ready. Our solution was to have everyone wake up an hour earlier, giving
people time to wake up properly and ensuring everyone was ready to start at 9 AM.

Overall, by effectively utilizing Trello, Scrum, and Discord, we improved productivity,
maintained clear communication, and ensured the successful management of our projects.
Next, we will reflect on our software development life cycle as a whole.

7.3 Software Development Process

Our software development life cycle began with a pre-sprint hackathon at Atlas HQ in
Oslo in January, detailed in Section [3.5.1], where our initial expectations for rest of the
project where set.

Both groups followed a similar development process and kept up with daily stand-up
meetings. Additionally, we shared similar GitHub rulesets which leads to an easier de-
velopment cycle. If one team had problems, the other team would come and assist when
necessary.

The initial stages of actual development included getting everyone comfortable in the
new development environment as several of our developers had little to no experience
with neither Python, TypeScript nor React. Our solution was to explain and discuss to
developers with experience and go through their initial thoughts on how the app would
be structured.

After the initial stages, we started working on the solutions Atlas wanted. Originally,
our plan was to start off with Image2Map and then move to Text2Map, but this was
quickly changed to us splitting up to two groups. This reflected our initial plan, where
we developed our two projects separately. In this stage, we also set up most of the

40

Simplifying GIS: Developing web-applications for Atlas

frameworks and a Github repository with the rules that we agreed on, as described in
Section [3.1.3]. This marked the transition from planning to implementation.

The implementation stage was challenging and required extensive research. Despite heav-
ily focusing on implementation, planning proved to be an essential part in every aspect.
While implementing all the functions we would require, we also had to test our soft-
ware while developing it. This consisted of mostly local testing. For Text2Map, prompt
engineering played a huge role in getting the desired AI outputs.

The deployment of our applications differed between the projects. The front-end for both
was deployed using Heroku. However, an older version of Text2Map’s back-end was a
10GB Docker container, which faced hosting issues on Heroku. After major changes, it
was successfully deployed and ran fully on Heroku, as detailed in Section [7.5.4].

Next, we will compare the two software solutions we developed to evaluate their respective
strengths and areas for improvement.

7.4 Comparison of GIS software solutions

Though the projects were developed from a similar starting point, they have their own
differences and uniqueness. In the following section, we are going to compare the two
projects. Image2Map and Text2Map are quite different and both are helping two different
aspects of the GIS world. Text2Map is very simple, with an extremely low learning curve.
Image2Map on the other hand, while still very user friendly compared to the competition,
has a slightly steeper learning curve if you have never attempted georeferencing before.
This makes Image2Map more of a professional tool than Text2Map, which can almost
be viewed as a playground rather than a tool.

Image2Map features a simple interface which lets anyone georeference either a PDF or
Image with a intuitive UI. It lets anyone place three or more markers on a interactive
map and your picture accordingly and the show this image on top of the interactive map
after getting georeferenced. This fact is a great strength of our app, as it is significantly
easier than anything that is out on the market right now, and especially better then
QGIS. Performance is significantly better than previously predicted. Our app is efficient
and georeferences quickly when three points have been marked. The page where you can
view the image over the map is heavily optimised using raster tiles to render the map.

Weaknesses to this approach is mostly reflected though the learning curve, while very
small, its still there. Rather, someone with experience using tools like QGIS will have a
predictably easier time doing it than someone who has never georeferenced before.

Text2Map is a simple tool, utilized to easily make maps from simple prompts or text /
CSV-styled input. It greatly reduces the amount of GIS knowledge needed to be able
to create a map from scratch. It uses advanced AI to answer the prompt and give a

41

Simplifying GIS: Developing web-applications for Atlas

meaningful and relatable map to the assistant output. Its strengths include its ease of
use, since the only user requirement is the ability to read and write.

The weaknesses of this application appears to be its dependency on AI. While this is
mostly a weakness it can also be seen as a strength. While the AI is mostly reliable and
gives decent answers, it can fail, which leads to the user having to repeat the process.

It can also be quite slow at times, especially with prompts that lead to extensive outputs
from the assistant. While it is positive that the AI can return such detailed and big
responses, the back-end processing which retrieves the boundaries and be quite slow and
even crash if it takes too long.

We will now delve deeper into specific achievements and challenges for Image2Map and
Text2Map respectively.

7.5 Achievements and challenges
This section will detail the achievements and challenges we made and encountered during
our development process.

7.5.1 Achievements and milestones in Image2Map

In Image2Map, we had three major milestones related to the task of georeferencing an
image using a map. Here we will go over each major milestone in our development.

(a) Confirmed in QGIS (GIS-desktop app).

(b) Zoomed in, showing

transformation match.

Figure 18. Confirmation of geographic metadata on image

In Sprint five, we created the first georeferenced image in the back-end, as mentioned in
Section [6.1]. By inputting mock data, including a picture and coordinates, we produced

42

Simplifying GIS: Developing web-applications for Atlas

a GeoTIFF. When this GeoTIFF was used in another GIS application, the image was
correctly georeferenced, as shown in Figures [18a] and [18b].

In Sprint seven, we managed to implement all the essential features for georeferencing,
such as marker placement, which sent the coordinates to the back-end and returned the
georeferenced image with the API-endpoint [6.1]. This allowed us to georeference images
using only the application’s UI and return a TIFF file containing geographic information.

In Sprint eight, we completed the tile-serving API route, which served the TIFF as tiles
to the MapBox component, allowing us to visualize the referenced map for the user in
the overlay view of our Image2Map application [6.1].

7.5.2 Challenges and difficulties in Image2Map

During development of the Image2Map project, the team encountered several significant
challenges where our problem-solving skills were tested. Here, we will delve into specific
difficulties we faced during development.

MapBox React

Poor documentation for using MapBox with React was a recurring issue. MapBox is
officially made for regular JavaScript, so we had to use an external version that supports
React. This made searching for relevant solutions more difficult.

Tiling service

Displaying the georeferenced image on a world map was more complex than anticipated.
The industry standard is to feed the image into a tiling service, which turns it into smaller
tiles that are served to the map when requested. Implementing this in our FastAPI back-
end using Python proved more challenging than initially expected.

The biggest challenge was finding the right Python tool for this task. Initially, we con-
sidered a static tile-serving solution that generated all tiles beforehand, but this required
significant storage and processing power. Instead, we used the Python library rio-tiler
(see Appendix [A.3.2.7]), which dynamically generates tiles only when needed, reducing
potential storage requirements.

The next section will go over the achievements, milestones, and challenges in Text2Map.

7.5.3 Achievements and milestones in Text2Map

The first major achievement in Text2Map was the first response received and the marker
placed on the map, as seen in Figure [19a]. This led to several smaller breakthroughs,
including finding an API that was reliable and inexpensive. Bing API ended up being

43

Simplifying GIS: Developing web-applications for Atlas

the best solution for our project.

(a) First Time getting a response with

markers placed.

(b) First Time getting a response with geometry and

markers.

Figure 19. Achievements for Text2Map development

The second major milestone for Text2Map was displaying boundaries on the map, as
seen in Figure [19b].

After achieving these features, the focus was shifted to improving the speed and efficiency
of the application. This led to a significant milestone: switching from OpenAI Chat to
OpenAI Assistant. This change improved performance and reliability, allowing continu-
ous conversation without resending chat history by letting us save each chat in a thread
run by OpenAI.

During this period, we began hosting our application live. The front-end was hosted on
Heroku, but the back-end was initially too large for Heroku, so we used Google Cloud
Run instead.

The final major milestone was switching from using Spacy for entity extraction to having
the OpenAI Assistant return a structured JSON with the mentioned places. This change
improved performance and, most importantly, reduced the Docker container size from
10GB to 1GB, allowing both the front- and back-end to be hosted on Heroku.

7.5.4 Challenges and difficulties in Text2Map

Chat API Text2Map, as discussed previously, is a cutting-edge app that uses new tech-
nology such as artificial intelligence. Initially, we used OpenAI’s Chat API (OpenAI,
2024), which was used about halfway through the development. This was slow, unre-
liable, and lost context after two messages. This was because we had to re-send the

44

Simplifying GIS: Developing web-applications for Atlas

entire chat history for the AI to remember the context, which was inefficient in terms of
resources, token usage, and performance.

Entity extraction Entity extraction involves any kind of extraction of countries, states,
cities, and places. These are the items that are processed to be placed on the MapBox
map. Extracting place entities using Spacy was initially acceptable, but had limitations.
It missed some places and identified non-existent ones. Hosting the back-end with Spacy
resulted in a 10GB Docker container, necessitating Google Cloud Run. We later found
a better solution with the OpenAI Assistant, which significantly reduced the container
size.

Geocoding Text2Map relied heavily on geocoding APIs. We tested various APIs (Google,
Geoapify, ArcGIS, and OpenStreetMap), but the Bing API proved to be the most reliable
and cost-effective.

Boundaries Finding a solution to obtain all the boundaries of every country, state, and
city was an important, but very difficult task. We started off by using a library that used
the geoBoundaries.org APIs to retrieve these boundaries, but lacked certain features and
would only extract countries, not other administrative levels, without heavy modification
on our part. Other APIs either had usage limits or incomplete data. Eventually, one of
our developers created a custom API, discussed further in Section [7.9.3].

Our next section reflects on the progress made throughout the project.

7.6 Progress
Making actual progress throughout a project is essential; it is its core purpose. With
that in mind, we are going to reflect on the progress as a whole in this section.

Overall, our progress has been good, although we have experienced a few ups and downs.
Establishing a good working routine and setting core hours were prioritized as early as
possible. While our initial structure of working from 10 AM to 3 PM was changed within
a month to 8 AM to 3 PM, which felt more in line with real-life work schedules.

We had a few rounds of illness, where many of the team members were ill and could not
work. Although progress was affected in some sprints, the teams still remained strong
and the end products speak for themselves.

The two teams have known each other for years, so the dynamic was already some-
what established. There were, however, some individual expectations that were different.
Although the first couple of months went by quickly with great progress, the general pri-
oritization of the two teams has always been the products we were developing for Atlas.
Since the products had a steeper learning curve than initially expected, more challenges
arose as we continued the development process. Progress, from the perspective of appli-
cation development, has rarely been compromised, which came at the cost of how much

45

Simplifying GIS: Developing web-applications for Atlas

time we spent as a whole group on the project documentation during this time. Looking
back at this, we could have delegated more resources to maintaining a steady pace on the
thesis, which is a key component of documenting the development process. While few,
we did experience some conflicts due to differences in individual expectations, especially
as the report submission date approached. This was organized in a way that for most
seemed fine at first, but in retrospect, the compromising solution favored the project
development more than documenting the project progress. As a result of this prioritiza-
tion, we experienced a sense of rush in terms of completing the project documentation.
While experiencing these difficult situations, there were attempted compromising solu-
tions that did not go through as the majority still wanted to keep developing. What we
have learned from this experience dealing with individual expectations is how important
it is to understand all perspectives of a group for it to work. While the majority saw the
development as a priority, we also needed to prioritize writing.

Overall, we think our progress throughout the whole project, while heavily focused on
development, has left us with two projects that we are proud of as a big team. In the
next section we will reflect on the quality of the final product.

7.7 Quality
Quality has been a core focus from the beginning, throughout the development process
of these two applications. Upon completion, it is time to reflect on the quality.

While both projects had quality in mind, we would argue quality translated to different
things for the two projects. Obviously, the end goal for both projects is to create in-
dividually good and accurate GIS tools. Although Image2Map’s end product is simply
how well one can georeference, or more specifically, its accuracy and how good its tools
improve the user experience, Text2Map has a very different goal in terms of quality. Its
end goal is to create a good map utilizing AI. This means we rely on generative AI, which
is difficult to really reflect on, as it is being constantly developed and improved upon.
While we think that the current implementation is the final product, we also know that
this will change in the future.

We are uncertain if anything could have been done differently for Image2Map, as its
goal is relatively static in nature. We believe that what we have made a solid baseline
product that holds up both quality and functionality wise to what Atlas expected. There
are features that would improve our final product significantly, but were not prioritized
due to time constraints. We believe that was the right decision to make, as a lot of them
were based on expanding the core functionality of the product.

Text2Map could have been improved if the team had more experience in the AI space.
Regardless, judging by the time-frame at our disposal, we believe we arrived at a satisfac-
tory product. An observation is that if we had initially started with OpenAI Assistant,
rather than Chat, we would have been able to develop more on the CSV part of the ap-

46

Simplifying GIS: Developing web-applications for Atlas

plication. More research in the pre-sprints would have been beneficial. Nevertheless, we
think our final product, and the quality of it, is still up to par with what Atlas expected
from us.

Both projects implemented pipeline automation using Github Actions. This is a pipeline
the Image2Map group developed, and while time consuming, we do think it contributed
significantly in getting the app up and running on the cloud whenever we did a feature
merge. While the pipeline could have been implemented with more internal tests before
getting published, we believe the time spent on this and the pipeline that was developed
was sufficient. This also goes for our branching rules and guidelines. While fundamentally
simple, it made the process of merging, as well as developing. very simple while keeping
the quality of the code up.

In the next section, we will go more into detail about the limitations that we observed
at project completion.

7.8 Limitations
Even the most successful projects have their limitations. For future improvements, it
is important to acknowledge the limitations, whereas in the following section we will
reflect on the limitations we have discovered. In our development process, we have
been committed to delivering quality features in line with Atlas’ initial expectations for
the web applications. Despite us successfully developing applications that achieve these
expectations, the time constraints imposed on us during the final sprints required us
to strategically focus on the more essential functionalities at the expense of more time
consuming, and less important features. This prioritization was vital for us to ensure
stability of the core components of the two applications.

Image2Map’s limitations are mostly due to time constraints. Currently, the main usage
limitations come down to our referencing process that does not do any warping of the
image, and is only limited to skewing and transforming. This restricts the application’s
ability to accurately reference images that require non-linear adjustments. Point error
calculation is a feature we had to deprioritize, explained in section [6.4.1], which could
be crucial for assessing the accuracy of the referencing process. This would be especially
useful for users who need to verify the precision of the spatial data, and not having
this implemented will potentially result in less accurate referencing overall. Another
limitation of Image2Map is that we have only implemented support for certain file types,
potentially excluding other potential map formats. Additionally, uploading a GeoTIFF
will result in it not retaining any geographic metadata, and only retain the image content.
Next, we will address the limitations of the T2M web application.

Text2Map is based on GPT 3.5, which is limited to information up to 2021. This could
easily be improved by changing the model to 4 or 4 Turbo. While removing some limita-
tions, it adds new ones. Examples being limitation of showing boundaries implemented

47

Simplifying GIS: Developing web-applications for Atlas

in 2024, like the new states in Norway. While both of these are out of our bounds to fix,
they are still considered limitations of our application.

7.9 Lessons learned

Throughout working on this project, we encountered a variety of challenges and oppor-
tunities that changed our understanding of the development process. In this section, we
aim to reflect on this, sharing the lessons learned during our development, important
decisions made that impacted the project, things that we felt went well, and finally what
we could have done differently.

7.9.1 Lessons learned along the way

This whole semester has been a great learning experience. We know that the best way
of learning is often to make some mistakes along the way. In the following section, we
will highlight some of the lessons we have learned during our development process which
influenced future decisions.

In the Image2Map project, we encountered instances where we figured out that the
solution we were looking at did not work as intended, or were unable to get working
easily. Initially, attempting to create custom components for specific functionalities,
such as image manipulation or dragging logic, seems like a good idea. Since this was an
early feature we made, we had not yet done proper research on how well some of the
external components would work in our use case. This ended up creating many bugs and
issues later in development that we needed to work out. We started looking into using an
external component for this feature, which could streamline development, reduce bugs,
and also improve code maintainability. However, refactoring this would have required
us to completely change certain sections of the code that relied on the current solution,
which made this unrealistic for us at that stage in the process. This made us more aware
of the need to conduct proper research of different existing solutions and possibilities
when beginning development on other features. One clear example is when we wanted
to add a movable scope for precision placement of markers, we instead used an existing
component called React-draggable, found in Appendix [A.2.7], which overall let us more
quickly develop a feature while still having high-quality clean code.

Text2Map underwent several complete refactors since the inception of the first working
prototype in February. Through this, we gained a better understanding of OpenAI and
its different APIs (Appendix A.4.3), and which to use for different projects. Throughout
the development process, we did change from one to another. We also learned along the
way that external APIs are not free, including the fact that some were better made by
our team than outsourced.

48

Simplifying GIS: Developing web-applications for Atlas

7.9.2 Important decisions

Most of our important decisions were set during our initial pre-sprint. This included
setting workdays and not working in weekends, core hours, and flex hours. This was a
positive solution and remained mostly unchanged throughout the semester, besides the
adjustment of core hours. After sprint two, we started meeting in person during Friday
meetings, which also worked as the end of every sprint. The decision of collective scrum
meetings ended up working great. As our two projects were similar in style and tech
stack, it helped us to all get better by learning from each other.

In the next section, we will talk about what went well in our project.

7.9.3 What went well?

We are really proud of both final products, and it appears that we have succeeded in
meeting Atlas’ expectations, as seen in Appendix [G]. Furthermore, the issue of not
having a physical office to go to worked well, using our virtual office solution (which
we previously mentioned in Section 3.1.2). Daily scrum meetings went well; we saw a
lot of great benefits of this from both teams, which was written about in Section 4.5.1.
However, to contrast this, we will now go over what could have done differently.

7.9.4 What could have been done differently?

Looking back at our approach on both projects, we generally think a lot was achieved,
although there were some elements that could have been done differently. Specifically,
when it comes to prioritizing development over project documentation. Additionally,
while our research seemed sufficient at the start of our semester, in retrospect, we would
have like to do more research before starting to create both back-ends and the Image2Map
front-end.

The tools we decided to use seemed to fit, and we believe we would have used the
same tools if the projects were to be restarted from scratch. Additionally, we believe we
will use several of the same tools in the future. What we think would have benefit us
significantly, at least for our Bachelors thesis, would be documenting in more detail what
we did through the daily sprint notes. This is something we realized quite late when we
were attempting to recall sprints during the development processes of the applications.

In retrospect, we could have prioritized differently when choosing features. An example
from Text2Map is enabling users to receive a link or tutorial which details how to embed
their own custom maps on their own web page. This could have potentially been added if
we prioritized this over further developing the assistant and making it more efficient. Re-
gardless, both teams believe they prioritized the right functionalities as the applications
progressed.

49

Simplifying GIS: Developing web-applications for Atlas

8 Conclusion
In reviewing our goals described in Section [2.4], we find that while our projects have
improved and simplified aspects of existing GIS solutions, there are still areas for im-
provement.

The Image2Map application has made georeferencing simpler and more accessible, but
lacks features such as extended image-manipulation and GCP exportation found in tra-
ditional GIS tools. Additionally, it lacks the feature of modifying GeoTIFFs, which are
stripped of metadata on upload. It shows promise as a simpler alternative, but requires
further development to fully replace traditional options.

The Text2Map application has succeeded in query-based visualization, but falls short
in data input and visualization, in addition to the shareability of the maps. Despite
this, the application offers useful features, such as AI-based formatting and GeoJSON
exportation. Text2Map serves as an introductory GIS tool, but needs some refinement
to fully fulfill Atlas’ requirements.

Our teams have gained valuable knowledge and teamwork experience throughout this
project, despite facing challenges. The learning experience and the completion of the
projects meet our personal academic standards. Although our applications may not
fully meet Atlas’ and their customers’ expectations, they provide a solid foundation for
further development. Despite not fully meeting Atlas’ original expectations, Atlas is
satisfied with our work, and our applications show potential for future enhancements.
This statement from Atlas, as well as our experiences as a collective group, suggests that
we have completed the projects in a respectable, professional, and satisfactory manner.

Postface
Regardless of our achievements through both applications, we set out to follow through
with an exciting project in the most ideal scenario imaginable; where we rejoice in our
successful completion of two projects in a respectable and professional way, in which we
can look back upon and reminisce in satisfaction. Not only, creating two applications
which would leave a positive experience for both Atlas and future users, but also, two
applications which emanate a polished and feature rich experience.

As a final note, we once again thank everyone we have had the pleasure of working with
during these exciting projects.

50

Simplifying GIS: Developing web-applications for Atlas

References
Adobe. (n.d.). Png files. Adobe. Retrieved May 15, 2024, from https://www.adobe.com

/creativecloud/file-types/image/raster/png-file.html
Adobe. (2023). What are TIFF files and how do you open them? Adobe. https://www.a

dobe.com/creativecloud/file-types/image/raster/tiff-file.html
Atlas. (2023). Enernite is becoming Atlas. Retrieved February 19, 2024, from https://ww

w.linkedin.com/posts/atlasmapshq_maps-activity-7122570117095301120-UPxg
Author), A. C. (F. (n.d.). Pillow: Python imaging library (fork). PyPI. https://pypi.or

g/project/Pillow/
AWS. (2023). Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon Simple

Storage Service. Amazon Web Services, Inc. https://aws.amazon.com/s3/
aws. (2024, April). Boto3 documentation. aws. https://boto3.amazonaws.com/v1/docu

mentation/api/latest/index.html
Axios. (2023). Getting Started | Axios docs. axios-http.com. https://axios-http.com/do

cs/intro
Belval. (2024, April). Pdf2image. Belval. https://github.com/Belval/pdf2image
Benyon, D. (2019). Designing user experience (4th ed.). Pearson Education.
Bjørdal, E. S. (2024). GeoB-Rust-API. https://github.com/Eiriksb/GeoB-Rust-API
Chacon, S., & Straub, B. (2024, May). Pro Git (2.1.428). Apress.
Codecademy. (n.d.). What Is REST? Codecademy. https://www.codecademy.com/artic

le/what-is-rest
Codex Community. (2022, July). Scrum in 20 mins... (with examples). YouTube. Re-

trieved May 9, 2024, from https://www.youtube.com/watch?v=SWDhGSZNF9
M

Damoor, P. (2019, November). History of Digital Maps. Medium. https://medium.com
/@prem.damoor19/history-of-digital-maps-b45e94ca45fa

Discord. (n.d.). Create Space For Everyone To Find Belonging. Discord. Retrieved May
13, 2024, from https://discord.com/company

Docker. (2023). What is a container? Docker Inc. Retrieved May 14, 2024, from https:
//www.docker.com/resources/what-container/

Docker. (2024). What is Docker? Docker Inc. Retrieved May 7, 2024, from https://ww
w.docker.com/

Drumond, C. (2022). Scrum - what it is, how it works, and why it’s awesome. Atlassian.
https://www.atlassian.com/agile/scrum

European Commission, Joint Research Centre, Samoili, S., López Cobo, M., Delipetrev,
B., Martínez-Plumed, F., Gómez, E., & De Prato, G. (2021). AI watch, defining
artificial intelligence 2.0 : towards an operational definition and taxonomy for the
AI landscape. Publications Office of the European Union. https://doi.org/10.276
0/019901

FastAPI. (2024, May). FastAPI. FastAPI. https://fastapi.tiangolo.com/
Figma. (2024). Figma: the Collaborative Interface Design tool. Figma. https://www.fig

ma.com/
Flanagan, D. (2006). Javascript: The definitive guide (5th ed.). O’Reilly Media, Inc.

51

https://www.adobe.com/creativecloud/file-types/image/raster/png-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/png-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/tiff-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/tiff-file.html
https://www.linkedin.com/posts/atlasmapshq_maps-activity-7122570117095301120-UPxg
https://www.linkedin.com/posts/atlasmapshq_maps-activity-7122570117095301120-UPxg
https://pypi.org/project/Pillow/
https://pypi.org/project/Pillow/
https://aws.amazon.com/s3/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://github.com/Belval/pdf2image
https://github.com/Eiriksb/GeoB-Rust-API
https://www.codecademy.com/article/what-is-rest
https://www.codecademy.com/article/what-is-rest
https://www.youtube.com/watch?v=SWDhGSZNF9M
https://www.youtube.com/watch?v=SWDhGSZNF9M
https://medium.com/@prem.damoor19/history-of-digital-maps-b45e94ca45fa
https://medium.com/@prem.damoor19/history-of-digital-maps-b45e94ca45fa
https://discord.com/company
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/
https://www.docker.com/
https://www.atlassian.com/agile/scrum
https://doi.org/10.2760/019901
https://doi.org/10.2760/019901
https://fastapi.tiangolo.com/
https://www.figma.com/
https://www.figma.com/

Simplifying GIS: Developing web-applications for Atlas

FuseGIS. (n.d.). 5 Challenges in GIS Implementation — and How to Overcome Them.
FuseGIS. Retrieved May 8, 2024, from https://www.fusegis.com/5-challenges

GeeksForGeeks. (2022, July). Static websites. GeeksForGeeks. https://www.geeksforgee
ks.org/static-websites/

GeeksForGeeks contributors. (2020, March). Component Based Software Engineering.
GeeksforGeeks. https://www.geeksforgeeks.org/component-based-software-engi
neering/

Geoapify. (2023, March). The Importance of GIS: 5 Key Benefits. Geoapify. https://ww
w.geoapify.com/gis-importance

GitHub. (n.d.-a). About GitHub and Git. GitHub. Retrieved May 13, 2024, from https:
//docs.github.com/en/get-started/start-your-journey/about-github-and-git

GitHub. (n.d.-b). About repositories. GitHub, Inc.
GitHub. (2024). Understanding GitHub Actions. GitHub. Retrieved May 6, 2024, from

https://docs.github.com/en/actions/learn-github-actions/understanding-github
-actions

GitLab. (2024a). What is a CI/CD pipeline? gitlab. Retrieved May 6, 2024, from https:
//about.gitlab.com/topics/ci-cd/cicd-pipeline/#why-should-it-leaders-use-ci-cd
-pipelines

GitLab. (2024b). What is CI/CD? GitLab. Retrieved May 6, 2024, from https://about.g
itlab.com/topics/ci-cd/

Goldin, S. E., & Rudahl, K. T. (1997). Why is GIS difficult. Proceedings of the 23rd Asian
Conference on Remote Sensing. Kuala Lumpur, Malaysia.

Goodwin, M. (2024, April). What is an Application Programming Interface (API). IBM.
https://www.ibm.com/topics/api

Gracilla, N. (2022, February). Explain it to me like i’m 5: What is a tech stack? Medium.
Retrieved May 6, 2024, from https://medium.com/@ngracilla/explain-it-to-me-l
ike-im-5-what-is-a-tech-stack-5e06c02e3023

Group 21 & The Atlas Repository. (2024). ImgPDF2Map. GitHub. https://github.com
/TheAtlasRepository/ImgPDF2Map

Group 22 & The Atlas Repository. (2024). Text2Map. GitHub. https://github.com/The
AtlasRepository/Text2Map

Heap. (n.d.). What is a Tech Stack: Examples, Components, and Diagrams. Heap. Re-
trieved May 7, 2024, from https://www.heap.io/topics/what-is-a-tech-stack

Hellum, S. (2019, November). JesterOrNot/pymath. GitHub. Retrieved March 6, 2024,
from https://github.com/JesterOrNot/pymath

Heroku. (2023). Running applications on dynos. Salesforce.com. Retrieved May 8, 2024,
from https://devcenter.heroku.com/articles/how-heroku-works#running-applic
ations-on-dynos

Heroku. (2024a). What is Heroku? Salesforce.com. Retrieved May 7, 2024, from https:
//www.heroku.com/what

Heroku. (2024b, March). Bucketeer - Add-ons - Heroku Elements. Heroku. Retrieved May
11, 2024, from https://elements.heroku.com/addons/bucketeer

Heroku Dev Center. (2024, April). Heroku Postgres | Heroku Dev Center. devcenter.heroku.com.
https://devcenter.heroku.com/articles/heroku-postgresql

52

https://www.fusegis.com/5-challenges
https://www.geeksforgeeks.org/static-websites/
https://www.geeksforgeeks.org/static-websites/
https://www.geeksforgeeks.org/component-based-software-engineering/
https://www.geeksforgeeks.org/component-based-software-engineering/
https://www.geoapify.com/gis-importance
https://www.geoapify.com/gis-importance
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://about.gitlab.com/topics/ci-cd/cicd-pipeline/#why-should-it-leaders-use-ci-cd-pipelines
https://about.gitlab.com/topics/ci-cd/cicd-pipeline/#why-should-it-leaders-use-ci-cd-pipelines
https://about.gitlab.com/topics/ci-cd/cicd-pipeline/#why-should-it-leaders-use-ci-cd-pipelines
https://about.gitlab.com/topics/ci-cd/
https://about.gitlab.com/topics/ci-cd/
https://www.ibm.com/topics/api
https://medium.com/@ngracilla/explain-it-to-me-like-im-5-what-is-a-tech-stack-5e06c02e3023
https://medium.com/@ngracilla/explain-it-to-me-like-im-5-what-is-a-tech-stack-5e06c02e3023
https://github.com/TheAtlasRepository/ImgPDF2Map
https://github.com/TheAtlasRepository/ImgPDF2Map
https://github.com/TheAtlasRepository/Text2Map
https://github.com/TheAtlasRepository/Text2Map
https://www.heap.io/topics/what-is-a-tech-stack
https://github.com/JesterOrNot/pymath
https://devcenter.heroku.com/articles/how-heroku-works#running-applications-on-dynos
https://devcenter.heroku.com/articles/how-heroku-works#running-applications-on-dynos
https://www.heroku.com/what
https://www.heroku.com/what
https://elements.heroku.com/addons/bucketeer
https://devcenter.heroku.com/articles/heroku-postgresql

Simplifying GIS: Developing web-applications for Atlas

IBM. (n.d.). What are large language models (LLMs)? IBM. Retrieved May 12, 2024,
from https://www.ibm.com/topics/large-language-models

Indeed Editorial Team. (2023a, March). Understanding Product Quality: What It Is and
Why It Matters. Indeed Career Guide. Retrieved April 30, 2024, from https://w
ww.indeed.com/career-advice/career-development/product-quality

Indeed Editorial Team. (2023b, December). Quality Control vs. Quality Assurance: Key
Differences. Indeed Career Guide. Retrieved April 29, 2024, from https://www.ind
eed.com/career-advice/career-development/quality-control-vs-quality-assurance

Indeed Editorial Team. (2024a, February). Code Quality: What It Is and How To Measure
It. Indeed Career Guide. Retrieved April 29, 2024, from https://www.indeed.com
/career-advice/career-development/what-is-code-quality

Indeed Editorial Team. (2024b, February). What Is Quality Assurance? (And How To
Improve Your Process). Indeed Career Guide. Retrieved April 29, 2024, from htt
ps://www.indeed.com/career-advice/career-development/what-is-quality-assura
nce

IONOS. (2023, July). Document Object Model (DOM). IONOS Digital Guide. https://w
ww.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-d
ocument-object-model-dom/

Maj, W. (2024, March). Wojtekmaj/react-pdf. GitHub. Retrieved March 6, 2024, from
https://github.com/wojtekmaj/react-pdf

Mapbox. (n.d.). Getting Started. Mapbox. Retrieved May 14, 2024, from https://docs.m
apbox.com/help/getting-started/

Mapbox. (2023, January). Mapbox GL JS. Mapbox. https://github.com/mapbox/mapb
ox-gl-js/

Mapbox. (2024). Mapbox. Mapbox. https://www.mapbox.com/
March, J. (2022, February). What is Quality Assurance vs. Quality Control? [5 key

differences]. www.qualio.com. Retrieved May 1, 2024, from https://www.qualio.c
om/blog/quality-assurance-vs-quality-control#:

MDN contributors. (2023a, September). Asynchronous. MDN. https://developer.mozill
a.org/en-US/docs/Glossary/Asynchronous

MDN contributors. (2023b, November). Document Object Model (DOM). MDN. https:
//developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

MDN Web Docs. (n.d.). Working with JSON. Retrieved May 3, 2024, from https://dev
eloper.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

Meta Open Source. (n.d.). React. react.dev. https://react.dev/
Moger, F. (2024, February). Private conversation regarding funding for Atlas ["€1.5m

fra investorer og €1m fra Innovasjon Norge, Forskningsrådet og Europeiske Rom-
fartssenteret"].

Moger, F., Hofgaard, M., Rieber, H. T., & Løwe, V. J. (2024, January). Information
presented during introductory hackathon at Atlas’s headquarters.

Munk, S., French, C., & Brundritt, R. (2022, July). Bing Maps REST Services - Bing
Maps. learn.microsoft.com. Retrieved May 14, 2024, from https://learn.microsof
t.com/en-us/bingmaps/rest-services/

53

https://www.ibm.com/topics/large-language-models
https://www.indeed.com/career-advice/career-development/product-quality
https://www.indeed.com/career-advice/career-development/product-quality
https://www.indeed.com/career-advice/career-development/quality-control-vs-quality-assurance
https://www.indeed.com/career-advice/career-development/quality-control-vs-quality-assurance
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://www.indeed.com/career-advice/career-development/what-is-quality-assurance
https://www.indeed.com/career-advice/career-development/what-is-quality-assurance
https://www.indeed.com/career-advice/career-development/what-is-quality-assurance
https://www.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-document-object-model-dom/
https://www.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-document-object-model-dom/
https://www.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-document-object-model-dom/
https://github.com/wojtekmaj/react-pdf
https://docs.mapbox.com/help/getting-started/
https://docs.mapbox.com/help/getting-started/
https://github.com/mapbox/mapbox-gl-js/
https://github.com/mapbox/mapbox-gl-js/
https://www.mapbox.com/
https://www.qualio.com/blog/quality-assurance-vs-quality-control#:
https://www.qualio.com/blog/quality-assurance-vs-quality-control#:
https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous
https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://react.dev/
https://learn.microsoft.com/en-us/bingmaps/rest-services/
https://learn.microsoft.com/en-us/bingmaps/rest-services/

Simplifying GIS: Developing web-applications for Atlas

National Geographic. (2023). GIS (Geographic Information System). National Geographic
Education. https://education.nationalgeographic.org/resource/geographic-infor
mation-system-gis/

ncbi. (2024, April). Libpq-dev. ncbi. https://github.com/ncbi/python-libpq-dev
Omoyeni, T. (2020). The Differences Between Static Generated Sites And Server-Side

Rendered Apps [Accessed: 2024-05-08]. Smashing Magazine. https://www.smash
ingmagazine.com/2020/07/differences-static-generated-sites-server-side-rendere
d-apps/

OpenAI. (n.d.). Openai charter. OpenAI. https://openai.com/charter/
OpenAI. (2023). About openai. OpenAI. https://openai.com/about/
OpenAI. (2024, April). OpenAI. OpenAI. https://openai.com/chatgpt
ProductPlan. (2022). What is a Minimum Viable Product (MVP)? | A Product Mgmt

Definition. ProductPlan. https://www.productplan.com/glossary/minimum-viab
le-product/

psycopg. (2024, April). Psycopg. psycopg. https://www.psycopg.org
Python Software Foundation. (2023). What Is Python? Executive Summary. Python.

https://www.python.org/doc/essays/blurb/
python-dotenv. (2024, April). Python-dotenv. python-dotenv. https://github.com/thesk

umar/python-dotenv
Quentin F. Stout. (2018, August). What is Parallel Computing? University of Michigan.

https://web.eecs.umich.edu/~qstout/parallel.html
Radigan, D. (n.d.). Three Steps To Better Sprint Reviews. Atlassian. https://www.atla

ssian.com/agile/scrum/sprint-reviews
Radigan, D. (2019). Agile Daily Standup. Atlassian. https://www.atlassian.com/agile/s

crum/standups
Radigan, D. (2024). What is kanban? Atlassian. https://www.atlassian.com/agile/kanb

an
Ramírez, S. (n.d.). Features - FastAPI. FastAPI. Retrieved May 9, 2024, from https://f

astapi.tiangolo.com/features/
rasterio. (2024, April). Rasterio. rasterio. https://rasterio.readthedocs.io/en/stable/
React Bootstrap. (n.d.). Spinners | React Bootstrap. react-bootstrap.netlify.app. Retrieved

March 6, 2024, from https://react-bootstrap.netlify.app/docs/components/spin
ners/

Reed, S. (2024, April). React-Draggable. github. https://github.com/react-grid-layout
/react-draggable

Rehkopf, M. (2019). Scrum Sprints. Atlassian. https://www.atlassian.com/agile/scrum
/sprints

rio-tiler. (2024, April). Rio-tiler. rio-tiler. https://cogeotiff.github.io/rio-tiler/
Sazid Mahammad, S., & Ramakrishnan, R. (2003). GeoTIFF -A standard image file

format for GIS applications. Geospatial World. https://www.geospatialworld.net
/wp-content/uploads/images/pdf/117.pdf

Science Education Resource Center. (2024, February 27). Science Education Resource
Center at Carleton College. Retrieved March 21, 2024, from https://serc.carleto
n.edu/research_education/geopad/georeferencing.html

54

https://education.nationalgeographic.org/resource/geographic-information-system-gis/
https://education.nationalgeographic.org/resource/geographic-information-system-gis/
https://github.com/ncbi/python-libpq-dev
https://www.smashingmagazine.com/2020/07/differences-static-generated-sites-server-side-rendered-apps/
https://www.smashingmagazine.com/2020/07/differences-static-generated-sites-server-side-rendered-apps/
https://www.smashingmagazine.com/2020/07/differences-static-generated-sites-server-side-rendered-apps/
https://openai.com/charter/
https://openai.com/about/
https://openai.com/chatgpt
https://www.productplan.com/glossary/minimum-viable-product/
https://www.productplan.com/glossary/minimum-viable-product/
https://www.psycopg.org
https://www.python.org/doc/essays/blurb/
https://github.com/theskumar/python-dotenv
https://github.com/theskumar/python-dotenv
https://web.eecs.umich.edu/~qstout/parallel.html
https://www.atlassian.com/agile/scrum/sprint-reviews
https://www.atlassian.com/agile/scrum/sprint-reviews
https://www.atlassian.com/agile/scrum/standups
https://www.atlassian.com/agile/scrum/standups
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://fastapi.tiangolo.com/features/
https://fastapi.tiangolo.com/features/
https://rasterio.readthedocs.io/en/stable/
https://react-bootstrap.netlify.app/docs/components/spinners/
https://react-bootstrap.netlify.app/docs/components/spinners/
https://github.com/react-grid-layout/react-draggable
https://github.com/react-grid-layout/react-draggable
https://www.atlassian.com/agile/scrum/sprints
https://www.atlassian.com/agile/scrum/sprints
https://cogeotiff.github.io/rio-tiler/
https://www.geospatialworld.net/wp-content/uploads/images/pdf/117.pdf
https://www.geospatialworld.net/wp-content/uploads/images/pdf/117.pdf
https://serc.carleton.edu/research_education/geopad/georeferencing.html
https://serc.carleton.edu/research_education/geopad/georeferencing.html

Simplifying GIS: Developing web-applications for Atlas

Scrum Guide | Scrum Guides. (n.d.). scrumguides.org. https://scrumguides.org/scrum-
guide.html#sprint-retrospective

scrumexpert. (2020, August). Scrum of Scrums: How to Succeed in 4 Simple Steps. Scrum
Agile Project Management Expert. Retrieved March 13, 2024, from https://www.s
crumexpert.com/knowledge/scrum-of-scrums-how-to-succeed-in-4-simple-steps/

scrum.org. (n.d.). What is a Sprint Review? Scrum.org. https://www.scrum.org/resour
ces/what-is-a-sprint-review

Sheehan, M. (2018, September). Why is GIS Simple ... so Difficult? Linkedin. Retrieved
May 8, 2024, from https://www.linkedin.com/pulse/keep-gis-simple-stupid-mat
t-sheehan/

SPI inc. (2024). Package: Libpq-dev (16.2-2 and others). ncbi. Retrieved May 8, 2024,
from https://packages.debian.org/sid/libpq-dev

The PostgreSQL Global Development Group. (2019). PostgreSQL: The world’s most
advanced open source database. Postgresql.org. https://www.postgresql.org/

Trylesinski, M. (2024, May). Kludex/python-multipart. GitHub. Retrieved May 7, 2024,
from https://github.com/Kludex/python-multipart

Tuychiev, B. (2024). Encapsulation in Python Object-Oriented Programming: A Com-
prehensive Guide. datacamp. Retrieved May 6, 2024, from https://www.datacam
p.com/tutorial/encapsulation-in-python-object-oriented-programming

USGS. (n.d.). What does "georeferenced" mean? | U.S. Geological Survey. USGS. Re-
trieved April 30, 2024, from https://www.usgs.gov/faqs/what-does-georeference
d-mean

Uvicorn. (n.d.). Uvicorn.org. Retrieved May 7, 2024, from https://www.uvicorn.org
Vercel. (2024, May). Server-side scripting. Vercel. https://nextjs.org/docs/pages/buildi

ng-your-application/rendering/server-side-rendering
vinayakmehta. (2024, April). Poppler-utils. vinayakmehta. https://pypi.org/project/pop

pler-utils/
Walley, J. (2022, October). Johnwalley/allotment. GitHub. https://github.com/johnwal

ley/allotment
West, D. (n.d.). Sprint Planning. Atlassian. https://www.atlassian.com/agile/scrum/sp

rint-planning
West, D. (2022). Agile scrum roles and responsibilities. Atlassian. https://www.atlassia

n.com/agile/scrum/roles
Wickramasinghe, S. (2021, October 1). GitHub, GitLab, Bitbucket & Azure DevOps:

What’s The Difference? BMC Software. https://www.bmc.com/blogs/github-vs-
gitlab-vs-bitbucket/

Zmejevskis, L. (2022, February 21). Ground control points. the cornerstone of accuracy.
Pixpro. https://www.pix-pro.com/blog/ground-control-points-accuracy

55

https://scrumguides.org/scrum-guide.html#sprint-retrospective
https://scrumguides.org/scrum-guide.html#sprint-retrospective
https://www.scrumexpert.com/knowledge/scrum-of-scrums-how-to-succeed-in-4-simple-steps/
https://www.scrumexpert.com/knowledge/scrum-of-scrums-how-to-succeed-in-4-simple-steps/
https://www.scrum.org/resources/what-is-a-sprint-review
https://www.scrum.org/resources/what-is-a-sprint-review
https://www.linkedin.com/pulse/keep-gis-simple-stupid-matt-sheehan/
https://www.linkedin.com/pulse/keep-gis-simple-stupid-matt-sheehan/
https://packages.debian.org/sid/libpq-dev
https://www.postgresql.org/
https://github.com/Kludex/python-multipart
https://www.datacamp.com/tutorial/encapsulation-in-python-object-oriented-programming
https://www.datacamp.com/tutorial/encapsulation-in-python-object-oriented-programming
https://www.usgs.gov/faqs/what-does-georeferenced-mean
https://www.usgs.gov/faqs/what-does-georeferenced-mean
https://www.uvicorn.org
https://nextjs.org/docs/pages/building-your-application/rendering/server-side-rendering
https://nextjs.org/docs/pages/building-your-application/rendering/server-side-rendering
https://pypi.org/project/poppler-utils/
https://pypi.org/project/poppler-utils/
https://github.com/johnwalley/allotment
https://github.com/johnwalley/allotment
https://www.atlassian.com/agile/scrum/sprint-planning
https://www.atlassian.com/agile/scrum/sprint-planning
https://www.atlassian.com/agile/scrum/roles
https://www.atlassian.com/agile/scrum/roles
https://www.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://www.bmc.com/blogs/github-vs-gitlab-vs-bitbucket/
https://www.pix-pro.com/blog/ground-control-points-accuracy

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix A Extended information on tools
etc.

This appendix contains extended information on vari-
ous tools, packages, etc. that have been using during
this project.

56

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.1 Version control: GitHub and Git
GitHub is a cloud-based platform for storing, sharing, and collaborating on code. GitHub
is built on the open-source version control system Git. When using GitHub, Git is
integrated into the GitHub repository, which is a central storage location for a project’s
code. When developing locally, one would have a local Git repository for a project, with
GitHub set as a "remote" location. This enables synchronizing of Git tracked changes to
GitHub where another developer can link their local repository and get the same code
version on their system (GitHub, n.d.-a).

There exist several other alternatives to GitHub, such as Azure DevOps and GitLab,
which also focus on version control. The difference in these services is in the additional
functionality they provide for tracking and managing versions, code changes ("Commits"),
and their other project management features (Wickramasinghe, 2021). We chose to utilize
GitHub for version control mainly because the tool is already used by Atlas, and our group
already has pre-existing familiarity with using it as well.

A.2 Front-end development

A.2.1 React

React itself is an open source front-end JavaScript library, with the purpose of building
user interfaces based on components (Meta Open Source, n.d.).

Component-based development can be defined by the term "loosely coupled". What
we mean by that is that each "part" or component of the system is not dependent on
the rest. In other terms, remain working even when other components are replaced or
changed, hence the term "loosely coupled". A byproduct of this development style is that
components could, and should, be reusable. This results in a more efficient code and
development process (GeeksForGeeks contributors, 2020).

Upon what can be developed through React: This library can be used to develop single-
page or server-rendered applications, the latter with NextJS. More about NextJS in the
next chapter.

A single-page application (SPA) is a web application or website that continually rewrites
the current web page that is in use. Traditionally, your web browser would load a whole
new page whenever a change was made to the interface the user is using. SPA on the
other hand would never load a completely new page, but rather only rewrite and update
the data that changes. By doing so, the whole process is significantly more efficient
(Flanagan, 2006, p. 497).

Now that we understand SPA, it is also important to understand Document Object
Model, or DOM for short, which is also an important factor in terms of Reacts function-

57

Simplifying GIS: Developing web-applications for Atlas, Appendix

ality. DOM is a cross-platform and language-independent interface. The key character-
istic of DOM is that it recognizes HTML and XML documents as tree structures, thus
creating a hierarchy (IONOS, 2023).

A feature of React is the use of a virtual DOM model to create an in-memory data-
structure cache, as well as computing the differences, and then updating the Virtual
DOM model when needed. What this process results in is a more efficient development
process where only the changes made are updated. The Virtual DOM model enables the
developer to receive live updates of the page, where, in reality, only the components that
are worked on are updated (MDN contributors, 2023b).

The concern of React is only user interface and its connected components, hence using
such models. We can recognize the key advantage React has, which is that it only
renders the parts that changes while using. This avoids unnecessary rendering of elements
that remain unchanged, hence the DOM model. The server-rendered application will be
explained in the next chapter about NextJS.

A.2.2 NextJS
As mentioned, NextJS is a web development framework. What NextJS does is extend
React, by providing web applications based on React. Such applications provide server-
side rendering as mentioned earlier, as well as static website generation (Omoyeni, 2020).

First, to understand server-side rendering, we have to understand how traditional web
pages made through JavaScript libraries work. Traditionally web pages are rendered in
the users browser, which gathers JavaScript’s from the server to be able to render the web
page. The limitations with this process are, for example, the limitation of users. What
we mean by this is that only users with access to JavaScript can utilize the web pages
developed this way. Additionally, users would experience increased page load times, as
well as hurting the search engine optimization.

Server-side rendering, on the other hand, executes this process on the server side, instead
of in the browser. The user request a web page in the browser, but instead of receiving
JavaScript’s that render the page, the user receives a fully rendered page that is ready
to be used. A limitation of client-side rendering (browser rendering) is that the scripts
themselves are bound to JavaScript. Server-side rendering accepts any and all scripting
languages, hence the increased flexibility. To add on to the flexibility, by accepting more
scripting languages, it also opens up the possibility for more customized interfaces for the
user. In our case with large amounts of map data, it might prove to be a more efficient
and smoother experience for the user on the client side when the advanced map data
pages are rendered on the server side rather than on the client side (Vercel, 2024).

By implementing NextJS, it also opens up the possibility of using static web pages. A
static web page is a page that is stored on the server and delivered to the web browser
exactly as stored. The difference static web pages have from server-side rendering is that

58

Simplifying GIS: Developing web-applications for Atlas, Appendix

static web pages already exist on the server. Server-side rendering on the other hand
creates new pages on the server and then delivers them to the web browser. By using
static web pages, you could significantly reduce the load on the server. Hence removing
live rendering of web pages wherever it is possible (GeeksForGeeks, 2022).

A.2.3 Axios

Axios is a promise-based HTTP client that works in both the browser and node.js, of-
fering an isomorphic design for seamless operation across both client and server environ-
ments. It leverages node.js’ native http module on the server and XMLHttpRequests in
the browser. Axios supports features like request and response interception, data trans-
formation, request cancellation, and automatic handling of JSON data, among others
(Axios, 2023).

A.2.4 React Spinners

React spinners is a React package that supplies some "spinners", which are different
variations, shapes and sizes of loading bars or circles. By using React spinners we aim
to visualize the loading process as well as engaging the user (React Bootstrap, n.d.).

A.2.5 Allotment

Allotment is a React package. It’s purpose is enabling resizable window panes. It has the
possibility to create resizable panes both horizontally and vertically, as well as creating
resizable containers within containers (Walley, 2022).

A.2.6 React-pdf

React-pdf is a React package which lets us display a pdf document on our page. In
Image2Map it is used for the pdf page selector page to display which page the user wants
to select for editing (Maj, 2024).

A.2.7 React-draggable

React-draggable is used to add dragging functinality for precision placement of markers
and movement of the coordinate list used in the application (Reed, 2024). In Image2Map
it is primarily responsible for the moving of the "sniper-scope" and the coordinates table.

59

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.3 Back-end development

A.3.1 FastAPI

FastAPI is a relative new web framework, intended for building RESTful APIs by uti-
lizing Python. One of the key characteristics of FastAPI is its support for asynchronous
programming. To be able to fully understand what this means, we will dive into what
RESTful APIs, APIs and asynchronous programming actually mean (FastAPI, 2024).

RESTful or REST is what we call "state transfer", or an architectural style of state
transfer to be specific. What REST does is to provide a standard for the communication
between computer systems and the web. One way to characterize REST, is by how state-
less and separate the principals are. REST separate the concerns of client and server.
What this enables is changes made in client will not affect the sever, and vice versa. In
other words, one could make lots of development changes in one or the other without
the other knowing, hence stateless and separate. REST is the standard of communica-
tion, the communication remains the same, but content can change without problems
(Codecademy, n.d.).

With our understanding of REST, we can understand what APIs are. In short terms, API
stand for "application programming interface" and is an interface created for computers
to be able to communicate securely with each other (Goodwin, 2024). For end users, we
have dedicated user interfaces.

As we mentioned earlier, a key characteristic of FastAPI is its support for asynchronous
programming. What this means is that the program is able to handle events that might
happen outside the main flow of the program. It might be the new arrival of information
while the main program is running, where it is able to handle such events alongside the
main flow. One could call it parallelism, which stands for multiple events happening and
running at the same time (MDN contributors, 2023a; Quentin F. Stout, 2018).

A.3.2 Python

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics, meaning the expressions can change at runtime, often depending on
the current state of the program’s execution. Python’s high-level built-in data struc-
tures, combined with dynamic typing and dynamic binding, make it very attractive for
Rapid Application Development, as well as for use as a scripting or glue language to
connect existing components together (Python Software Foundation, 2023).

60

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.3.2.1 Pymath

Pymath is an integrated library which is designed to extend Python’s already existing
math module, offering additional functionalities and tools for more complex mathemat-
ical computations and operations. It’s aim is to provide a more comprehensive suite of
mathematical resources to developers, facilitating easier and more efficient implementa-
tion of mathematical algorithms within Python applications (Hellum, 2019).

A.3.2.2 Pillow

Pillow is Python library that provides an extensive expansion in terms of file format
support and image processing capabilities (Author), n.d.). In our case, it is utilized to
crop, modify, and convert image file format.

A.3.2.3 Uvicorn

Uvicorn is a low-level server interface for Python that implements the ASGI (Asyn-
chronous Server Gateway Interface) specification. This makes it possible to run servers
for async frameworks such as FastAPI (“Uvicorn”, n.d.). In the projects, it is used to
run the FastAPI backend code, and allows the writing and usage of async functions.

A.3.2.4 Rasterio

Rasterio is a Python package which gives access to geospatial raster data; this enables
us to read and write geo-specific formats such as GeoTIFF and provides Python APIs
(rasterio, 2024). In Image2Map, we utilize this to mostly write GeoTIFF, but we use the
reading functionality provided by the package.

A.3.2.5 Python-multipart

Python-multipart is a "streaming multipart parser" for Python that makes it possible to
stream large files in multiple parts (Trylesinski, 2024). This is utilized in the Image2Map
project whenever larger files are sent back and forth.

A.3.2.6 pdf2image

pdf2image converts PDFs to image objects, and is a small python util package for python
version 3.7+ wrapping two other packages; pdftoppm and pdftocairo (Belval, 2024).
Image2Map uses this package for its conversion tools.

61

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.3.2.7 rio-tiler

rio-tiler is a wrapper around rasterio and GDAL, able to map tiles compatible with web-
maps. Because of wrapping, it has built-in support for rasterio datatypes(rio-tiler, 2024).
Image2Map uses this to create tiles and stream them to the MapBox map to overlay a
tiled GeoTiff on the map.

A.3.2.8 python-dotenv

python-dotenv is used to allow python to read key-value pairs from a .env file(python-
dotenv, 2024). It is used to keep and read defined API secret, and because it is a file,
separated it from the version control system (In our case, Git).

A.3.2.9 poppler-utils

poppler-utils is a pre-compliled commandline utility for manipulating PDF files and con-
verting them to other files, based on poppler (vinayakmehta, 2024). This is a bigger
dependency for other packages that Image2Map uses.

A.3.2.10 psycopg2-binary

psycopg2-binary is a PostgreSQL database adapter for Python, the core of psycopg com-
pletely implements Python DB API 2.0 (https://peps.python.org/pep-0249/) specifica-
tions (psycopg, 2024). It is used in Image2map to "talk" to a PostgreSQL database.

A.3.2.11 boto3

boto3 is an AWS (Amazon Web Services) SDK (software development kit) for Python.
It enables creating, configuring, and managing AWS services, like AWS S3 (aws, 2024).
We use this in Image2map to manipulate and get data from our AWS S3 buckets.

A.3.2.12 libpq-dev

"The libpq-dev library is built following Debian’s libpq-dev package idea: it contains
a minimal set of PostgreSQL binaries and headers required for building 3rd-party ap-
plications for PostgreSQL." (ncbi, 2024). Debian libpq-dev is in addition to compile C
programs to link with the library (SPI inc., 2024). This is a necessary dependency for
the usage of psycopg2 in Image2map.

62

https://peps.python.org/pep-0249/

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.4 Dependencies

A.4.1 MapBox

MapBox provides an API for accessing and creating custom maps of the world for use
in for web, mobile and automotive applications. MapBox supplies online maps for many
other popular applications and companies such as Toyota, Voi, Samsung, T Mobile and
many more (Mapbox, 2024).

A.4.2 GeoB Rust API

The GeoB Rust API is a custom-made API point made and serviced separately from the
main application. This API point simply returns a singular geojson file that the user
searches for. This can be either countries by themselves or cities / states inside those
countries. The API is written in Rust and is completely open source (Bjørdal, 2024).

A.4.3 OpenAI

OpenAI, is a research organization focusing on artificial intelligence (AI). The organiza-
tion’s goal is to develop "safe and beneficial" artificial intelligence (OpenAI, n.d., 2023).

A.4.4 ChatGPT

ChatGPT is an LLM developed by OpenAI that can assist with many different tasks, for
example writing, learning, and brainstorming. ChatGPT is able to answer questions as
well as render images based on requirements. (OpenAI, 2024).

A.4.5 Bing Maps REST Services

The Bing Maps REST Services Application Programming Interface (API) is a web service
provided by Microsoft and provides a Representational State Transfer (REST) interface
that allows for the integration of various mapping and location-based services into differ-
ent applications. Some useful functionalities provided by the API are the geocoding of
addresses (converting addresses to geographic coordinates), reverse geocoding (convert-
ing coordinates to addresses), retrieving imagery metadata, and traffic information, to
name some examples (Munk et al., 2022).

63

Simplifying GIS: Developing web-applications for Atlas, Appendix

A.4.6 Encapsulation

"Encapsulation is a fundamental object-oriented principle in Python. It protects your
classes from accidental changes or deletions and promotes code reusability and maintain-
ability" (Tuychiev, 2024).

A.4.7 Amazon S3

Amazon Simple Storage Service (Amazon S3) is a cost-effective object storage service
delivered by Amazon. The service offers industry-leading scalability, data availability,
security, and performance, and is equipped with many easy-to-use management features
that help customers control and configure the service to meet their specific needs and
requirements (AWS, 2023).

A.4.7.1 Heroku Bucketeer

Heroku Bucketeer is an add-on for Heroku that allows you to use Amazon S3 directly from
a Heroku application. The add-on makes setup quick and simple, along with additional
control and tools for convenience and quality of life (Heroku, 2024b).

A.4.8 PostgreSQL

"PostgreSQL is a powerful, open source object-relational database system with more than
35 years of active development that has earned it a strong reputation for reliability, feature
robustness, and performance" (The PostgreSQL Global Development Group, 2019).

A.4.8.1 Heroku PostgreSQL

Heroku Postgres is a PostgresSQL database service provided directly by Heroku, allowing
for easier setup and use with applications running on Heroku. Heroku Postgres also
provides a web dashboard for easier overview and control, in addition to several other
useful features (Heroku Dev Center, 2024).

64

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix B Additional Figures

This appendix contains Additional figures of the final
product of each of the projects, Image2map and Text2map.

65

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.1 Atlas Figma

B.1.1 Figma Image2Map

Figure B.1. Figma Image2Map Overview

Figure B.2. Figma Image2Map Landing Page

66

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.3. Figma Image2Map file upload

Figure B.4. Figma Image2Map file upload fail

67

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.5. Figma Image2Map file upload success

Figure B.6. Figma Image2Map Pre Edit of file

68

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.7. Figma Image2Map Side by Side

Figure B.8. Figma Image2Map Selecting point 1

69

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.9. Figma Image2Map finished point 1

Figure B.10. Figma Image2Map Auto-suggest point

70

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.11. Figma Image2Map Coordinates table

Figure B.12. Figma Image2Map Hover on coordinates

71

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.13. Figma Image2Map clipping

Figure B.14. Figma Image2Map choosing Transform

72

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.15. Figma Image2Map Map view overlay 1

Figure B.16. Figma Image2Map Map view overlay 2

73

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.2 Figma Text2Map

Figure B.17. Figma Text2Map Overview

Figure B.18. Figma Text2Map Landing page

74

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.19. Figma Text2Map Clean text Input page

Figure B.20. Figma Text2Map Spreadsheet input

75

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.21. Figma Text2Map Asking AI

Figure B.22. Figma Text2Map Initial AI response

76

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.23. Figma Text2Map Centered on a location

Figure B.24. Figma Text2Map Adding new location

77

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.25. Figma Text2Map Edit location

Figure B.26. Figma Text2Map Embed map

78

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.27. Figma Text2Map Sharing Map

Figure B.28. Figma Text2Map Exporting Map

79

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.3 Examples from initial Trello cards

Figure B.29. Card in Norwegian, description is a User Story of Cropping

Figure B.30. Card in Norwegian, description is a User Story of Satellite-View

Figure B.31. Card in Norwegian, description is a User Story of Uploading Formats

80

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.4 Sketches & Mockups

B.4.1 Image2Map

Figure B.32. Simple sketch of the "map toolbar"

Figure B.33. Simple sketch of the landing page

81

Simplifying GIS: Developing web-applications for Atlas, Appendix

(a) First mockup of dropdown menu (b) Second mockup of dropdown menu

Figure B.34. Mockups of dropdown menus used on mobile devices

B.5 Work Hours collective Data

Figure B.35. Collective data of work hours

82

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.6 Final product images

B.6.1 Image2Map

Figure B.36. Landing Page of Image2Map

83

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.37. PDF Selector for Image2Map

Figure B.38. Split-View in Image2Map, One of the essential user view’s for the app

to function.

84

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.39. Crop in Image2Map, Side tool for a user to adjust the image by cropping

Figure B.40. Overlay-view in Image2Map, One of the essential user view’s, where the

user is able to validate the result.

85

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.41. Docs (Swagger docs) of back-end endpoints in Image2Map, Number 1

86

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.42. Docs (Swagger docs) of back-end endpoints in Image2Map, Number 2

87

Simplifying GIS: Developing web-applications for Atlas, Appendix

B.6.2 Text2Map

Figure B.43. Split View after asking the GPT about where bananas are grown.

Figure B.44. Landing page for Text2Map

88

Simplifying GIS: Developing web-applications for Atlas, Appendix

Figure B.45. Landing page for the CSV part of Text2Map

Figure B.46. Landing page for the Text part of Text2Map

89

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix C Daily Notes

This appendix has been removed from the published
thesis due to privacy concerns. The important content
from this Appendix can be found summarized in Chap-
ter [6.1].

90

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix D Scrum retrospectives

This appendix has been removed from the published
thesis due to privacy concerns. The important content
from this Appendix can be found summarized in Chap-
ter [6.1].

91

Simplifying GIS: Developing web-applications for Atlas, Appendix

D.1 Sprint 1, 2, & 3

92

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix E Image2Map: Future develop-
ment

This appendix contains future suggestions for further
developing Image2Map, taken from the documentation
in the projects code-base on GitHub (Group 21 & The
Atlas Repository, 2024). This is a prioritized list of
suggestions for improvements and enhancements to the
application.

93

Simplifying GIS: Developing web-applications for Atlas, Appendix

Authors: Tom A. S. Myre, Markus Nilsen, Marius Evensen, Sebastian Midt-
skogen & Lukas A. Andersen Date: 02.05.2024

This document is intended to provide information on the further suggested development
after our handover to Atlas. As a guide, we will provide suggestions for general improve-
ments, new features, and expansions.

Note: There are also enhancements listed in the GitHub-repo Issues, which
are not mentioned here.

Defining the general structure of the suggestion, the top line will consist of a Title and a
Type Category. The next line will have two fields/keywords that describe the estimated
difficulty and our amount of already completed research & testing. Below is a list of the
different categories and a short note on what these encompass, as well as an example.

1. Type:

• Front-end (The Next.js application / website)
• Back-end (The FastAPI / processing / backend connected Services)
• Fullstack (Encompassing both)
• unknown (Unsure of where to place, or the current types are not descriptive)

2. Difficulty:

• Low (Relatively easy, considering context)
• Medium (Some time/difficulty expected)
• High (Expected high difficulty and high time consumption)
• unknown (We are not sure, and can not estimate time & difficulty)

3. Researched:

• None (Only based on intuition, given our work with the project)
• Low (Some testing done, and/or started researching)
• Medium (Decent amount of testing done, and/or researched somewhat)
• High (Good amount of testing done, and/or researched a lot)

Example, Front-End:

• Difficulty: Medium
• Research: Medium

Description: What we suggest to implement, why we suggest this imple-
mentation, & possibly a theoretical suggested solution.

94

Simplifying GIS: Developing web-applications for Atlas, Appendix

E.1 High priority
Point error calculation, Fullstack:

• Difficulty: High

• Research: Medium

Description: Calculate the amount of deviation from their real positions
that the user’s original points are. This is supposed to be done when users
add more than the minimum amount of points to a map for georeferencing.
This will then improve accuracy, and they would be able to see how far off
their original marker placements were compared to the re-georeferenced points
on the map.
A suggestion on this is to create an algorithm that creates an affine transfor-
mation matrix, to have more control of the calculation parameters. In this
case, it must be accepted by Rasterio.
Another possible solution is to convert to the base use of GDAL for transfor-
mation, but this option has not been explored as thoroughly.

E.1.1 Good Starter

Logging Middleware, Front-End:

• Difficulty: Medium

• Research: Low

Description: Implement a standardized logging middleware to log crucial
information during runtime, and generate better metrics. It would also be
beneficial to have different log levels in the code to differentiate good devel-
opment information and staged runtime logs. This is also a good way to get
familiar with the codebase.

E.2 Medium priority
Rotation of Image with map, Fullstack:

• Difficulty: Low

• Research: Low

Description: This suggestion includes being able to synchronously rotate
the image in split-view, along with the map after it has been georeferenced.

95

https://se.mathworks.com/discovery/affine-transformation.html
https://se.mathworks.com/discovery/affine-transformation.html
https://rasterio.readthedocs.io/en/stable/topics/transforms.html#using-affine-transformation-matrix

Simplifying GIS: Developing web-applications for Atlas, Appendix

This is to make the image behave more like the map, and keep the image and
map in a similar state while working.
Theoretically, this can be done by calculating the deviation from the real
positions, after georeferencing, by determining the image’s corner bounds.
Then, it is possible to calculate the line towards the north from the center
and adjust the starting point by rotating it to align with the north. Lastly,
extract the rotation from MapBox and replicate it in the image view.
Subfeature: To be able to lock the image upright after triggering the mini-
mum requirements for the feature above.

Refactor ProjectHandler, Back-End:

• Difficulty: Medium

• Research: Low

Description: Separate the ProjectHandler into smaller classes. The reason
for this is to improve the current readability of the codebase, and that the
ProjectHandler-class currently has too much responsibility.
A suggestion on our part would be to split the handling of points to one class
and the handling of georeferencing to another.
A subsuggestion to the previous is to have the new GeoreferencingHandler
know of the ProjectHandler, which in turn uses the PointHandler. The API-
router will use all three.

Suggested points, Fullstack:

• Difficulty: High

• Research: Medium

Description: After the inital georeference, the software could suggest points
on the map to be placed. This could greatly improve the user experience and
the learning curve for new users of this kind of software. However, this might
be a quite difficult task, as it would probably have to include some kind of
Artificial Intelligence or advanced algorithm to achieve this at a good level.
In terms of an algorithm, this would then most likely depend on different
code-changes and improvements, such as the error point calculations.

E.2.1 Good starters

A General HTTPExceptionHandler, Back-End:

96

Simplifying GIS: Developing web-applications for Atlas, Appendix

• Difficulty: Low

• Research: Medium

Description: Create a common exception class to respond with the appro-
priate HTTP-exceptions. This is to consolidate the error response for the
routers, which would improve readability. A possible way to do this is with
Python decorators, a FastAPI dependency injection, or a combination of both.

Rotate Image, Front-End:

• Difficulty: Low

• Research: Medium

Description: Giving the user the possibility of rotating the uploaded image.
This can be useful in cases such as when a user has a PDF where the image
is rotated sideways, or when in general when images are not facing the classic
north used in maps we are familiar with. This is not a feature we have
previously prioritized, but is more prevalent now, and it should be relatively
easy to implement.

Automated Testing, Back-end:

• Difficulty: Medium

• Research: Low

Description: The project currently lacks tests, so code-breaking changes are
hard to identify. What would help mitigate this is to create unit tests for the
core logic classes in the back-end API. This is a bit of work, but will make
you familiar with the existing code. This also has the added benefit of a more
thoroughly checked code, which can give more confidence to making changes
and ensuring that the application works as intended.

E.3 Low priority
Clock to run on Heroku, Back-End:

• Difficulty: Medium

• Research: Medium

Description: The clock script’s intention is to run periodic tasks on the
database, specifically cleaning the storage of stale projects and files.
This would be a full implementation of projectSelfDestruct, where the clock
would fetch from the database the projects that are over the time limit. For

97

Simplifying GIS: Developing web-applications for Atlas, Appendix

example, the clock can fetch every 10 minutes and delete projects that are
above the limit. We also recommend setting a new self-destruct time each
time a project is updated to prevent active projects from being deleted. Here
is a source on Heroku clock setup.

Workers, Back-End:

• Difficulty: High

• Research: High

Description: Creation of a worker to offload more processing-heavy tasks
from FastAPI. This is to prepare the application for more scalability and
making it more redundant. A worker should handle all of the file saving,
and creation and manipulation of projects. For communication between the
worker and the API it is recommended to use a Message Broker.
A suggestion is to use a combination of RabbitMQ (Message Broker) and
Celery to implement this. RabbitMQ might be time-consuming and complex
to setup, but it includes built-in redundancy in the queues and several other
features, hence the complexity. Additionally, there exists a Heroku Addon for
a RabbitMq server, which has built-in metrics.
If Rabbit is too complex, one of the alternatives, Redis Queue, is more bare-
bones and easier to setup. It has fewer features, but it is possible to set up
with the features Rabbit has, but it is a very manual process to do this; this in
turn could make the implementation of RQ more complex than implementing
Rabbit.

Editing placed Marker Pairs (Points), Front-End:

• Difficulty: Low

• Research: Medium

Description: It could be beneficial for the user to be able to select a marker
pair from the coordinates table, adjust them, and have them updated. This
could increase usability, as the user might have confirmed a pair before prop-
erly checking the location, and might want to adjust either the coordinates
(map), or the pixel placement (image). This is prioritized as low due since
the user has the possibility to delete points.
The back-end endpoint for updating a Marker Pair already exists, and the
data to do so is in the front-end, but the user interaction and flow are missing.

Multiple Image Georeferencing, Fullstack:

• Difficulty: High

98

https://devcenter.heroku.com/articles/scheduled-jobs-custom-clock-processes
https://devcenter.heroku.com/articles/scheduled-jobs-custom-clock-processes
https://www.rabbitmq.com/
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://elements.heroku.com/addons/cloudamqp

Simplifying GIS: Developing web-applications for Atlas, Appendix

• Research: None

Description: A suggestion that might be beneficial for the user is to have
the possibility of uploading multiple images at once and georeference them
together, and see them on the Overlay together. Another suggestion is for
the user to upload multiple images at once and then work through them
separately, like a backlog, before showing them all on the Overlay. This
is to improve the workflow in case the user has multiple files they need to
work with - rather than going back, uploading, georeferencing, checking, then
downloading, the user could instead get a more seamless user-experience,
starting and ending the process only once.
Georeferencing multiple images would require a more substantial change in
the way the back-end stores file paths and how it handles file paths. Addition-
ally, the front-end would also require substantial rework in how it manages
and displays images.

99

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix F Text2Map: Future development

This appendix contains future suggestions for further
developing Text2Map. This is a prioritized list of sug-
gestions for improvements and enhancements to the ap-
plication.

100

Simplifying GIS: Developing web-applications for Atlas, Appendix

This document provides some thoughts and suggestions for future improvements for the
application.

F.1 Change of Generative AI Model
As this software heavily relies on Generative AI and this always is changing and under
development: It is important to constantly do research around the the idea of using
different Generative AI models like Gemini, Lambda or a different versions of GPT.
Gemini would probably be the best bet as it can be toggled to only return a JSON file,
which is different from how the Assistant currently works as it is only asked nicely to
return it as one.

AI Model Pros Cons
Gemini Very good and natural replies.

Can return directly as a JSON.
Expensive and currently very lim-
ited in how many countries it
works in and how many times you
can use it in a day.

OpenAI Decent answers and cheap to run.
Has no limits on how many times
you can request a day.

Can provide unreliable answers,
especially in formatting the JSON
correctly. The assistant has fewer
features than Gemini.

Meta Llama Open Source and can be run lo-
cally.

While it can be run locally and is
pretty quick, it gives more unre-
liable answers than OpenAI and
fails most of the time to get the
JSON structure right, which is
crucial for the app.

Grok Open Source and can be run lo-
cally.

Isn’t meant for this kind of use
case. Can be very political. Not
suitable for the app.

Mixtral-8x7B Open Source and can be ran lo-
cally. Has technically no limits
if ran locally other then costs of
runnning such a thing. Really
good answer from testing.

Might be expensive to run if done
locally. Haven’t done to much re-
search into it but doesn’t seem
to have an Assistant like OpenAI
has

F.2 Prompt Engineering
More research into what to tell the Assistant also needs to be looked at further. Prompt
engineering is just as important as developing the software and would and will lead to
better responses from the AI, which would directly improve the general user experience

101

Simplifying GIS: Developing web-applications for Atlas, Appendix

and the reliability of the answers it gives. Currently this prompt seems to give the most
reliable and best answers while maintaining the JSON Structure.

You are a text interpreter tasked with providing informative responses. You also do have access to a Map and if you are questioned to show where on a map something is you will explain it. You will fill the Information with a medium but insightful and informational response an you will return every place with a each own item inside the locations list.

Final Output Requirement:

{
"Information: "Information",
"locations": [

{
"country": "ISO3",
"state": "State or Region",
"city": "City Name",
"place": "Specific Place"

}
]

}
Please don’t write anything in your reply outside of this JSON and keep every comma as instructed. And do not fill the locations with anything but a locations, and only a Single country. And add every location that is mentioned in informations in the format I have requested.

But I belive this can be further engineered to give even better answers.

F.3 CSV Feature
Currently the ChatGPT part of the App is the most fully fledged one. CSV need to be
better implemented as the current solution is quite bare bones, and only really extracts
locations from the text without giving much extra information or further explanations
related to them.

This can be improved by changing the Assistant used for this part of the project (There
are different assistants for CSV and Text2Map), in addition to changing the general
formatting of the inputted prompt from the user if they decide to upload a CSV files, as
the current solution for formatting might not look good.

F.4 Embed Map
This feature was requested so that users could easily embed their generated maps into
their own websites or applications. This functionality has not yet been implemented, but
to do so would in our opinion require two things:

1. For data to be stored somewere persistently.

102

Simplifying GIS: Developing web-applications for Atlas, Appendix

2. Implement two dedicated page-displays for displaying stored data:

• One with the text at the side of the map,
• One with only the map.
• Additionally without options for editing, and without the navigational bar at

the top.

103

Simplifying GIS: Developing web-applications for Atlas, Appendix

Appendix G Client statement from Atlas

This appendix contains a statement from the client,
written in Norwegian, by Fredrik Moger. Additionally,
it has been translated using AI into English.

104

Simplifying GIS: Developing web-applications for Atlas, Appendix

G.1 Orignial Statement in Norwegian
PDF2Map og Text2Map har vært to utfordrende prosjekter med høy grad av teknisk
usikkerhet og kun grove produktskisser ved prosjektoppstart. Til tross for dette har
studentene levert to utrolig bra produkter ved prosjektslutt. Som oppdragsgiver har vi
særlig observert tre egenskaper ved gruppene, som vi tror har vært sentrale faktorer bak
prosjektresultatene.

Nysgjerrig: til tross for at studentene måtte ta i bruk ny teknologi som man tidligere
ikke hadde brukt, var tilnærmelsen alltid preget av nysgjerrighet. De var uredde for å
oppsøke kunnskap, spørre om hjelp, prøve og feile. Som programvareutvikler rir man en
teknologisk bølge med høy fart, og det er umulig å allltid være oppdatert på ny teknologi.
Evnen til å være uredd og nysgjerrig tror vi har vært sentral for å lykkes med prosjektene.

Teamarbeid: det har vært en tydelig rolleinndeling fra start, og det oppleves som
kommunikasjonen internt har vært veldig god. Kommunikasjon med oppdragsgiver har
vært presis og strukturert. På de ukentlige demoene har det alltid vært uttrykt positivitet
og entusiasme fra teamet.

Teknisk kompetanse: selv om prosjektene har vært teknisk krevende, er det ikke tvil
om at studentene innehar høy teknisk kompetanse. På mange måter er dette et biprodukt
av det å være nysgjerrig og uredd. Vi er sterkt imponert over hva studentene har levert
fra et teknisk perspektiv.

Alt i alt, stiller vi oss veldig positive til leveransen som har blitt gjort, og gleder oss til
å følge studentene i tiden som kommer

G.2 AI translated statement
EnglishChatGPTTranslate

PDF2Map and Text2Map have been two challenging projects with a high degree of
technical uncertainty and only rough product sketches at the project start. Despite
this, the students have delivered two incredibly good products at the end of the project.
As the client, we have particularly observed three qualities in the groups that we believe
have been key factors behind the project results.

Curiosity: Despite having to use new technology that they had not previously used, the
approach was always characterized by curiosity. They were unafraid to seek knowledge,
ask for help, try, and fail. As a software developer, one rides a technological wave at high
speed, and it is impossible to always be updated on new technology. The ability to be
fearless and curious, we believe, has been crucial for succeeding in the projects.

Teamwork: There has been a clear division of roles from the start, and internal com-
munication has been very good. Communication with the client has been precise and

105

Simplifying GIS: Developing web-applications for Atlas

structured. In the weekly demos, there has always been expressed positivity and enthu-
siasm from the team.

Technical competence: Even though the projects have been technically demanding,
there is no doubt that the students possess high technical competence. In many ways,
this is a byproduct of being curious and fearless. We are deeply impressed by what the
students have delivered from a technical perspective.

Overall, we are very positive about the delivery that has been made and look forward to
following the students in the future.

106

	Introduction
	Background
	Project Management
	Project Implementation
	Quality Control
	Final Product
	Reflection
	Conclusion
	Appendix Extended information on tools etc.
	Appendix Additional Figures
	Appendix Daily Notes
	Appendix Scrum retrospectives
	Appendix Image2Map: Future development
	Appendix Text2Map: Future development
	Appendix Client statement from Atlas

