
SmartHub with AMS interface
of

Sondre Håverstad, Jan Roar T. Mydland and Eivind Stendal

Supervisors: Geir Jevne and Ken Henry Andersen

Bachelor’s thesis in ELE301, 6th semester, e.g. Spring 2017

Faculty of Engineering and Science

University of Agder

Grimstad, May 2017

Status: Final

<AMS interface, SmartHub, nRF52, Meter-Bus, FreeRTOS>

Summary

This report surrounds the introduction of the AMS smart meter, which is currently being installed
in every Norwegian household. The AMS smart meter will collect measuring data about your power
consumption about every few seconds and save the information by uploading it to a central location.
The information will be used to monitor the power flow in terms of making the whole billing process
automatic and improving the power grid. But it is hard to see what the user get out off it, except of a
higher electricity bill.

This project tent to make the AMS a benefit for the user as well as for the power grid, by using the same
information as the power companies to even out power peaks, which may result in higher power prices
in the future. The group has put a lot of hours and effort into this project, and it has challenged us in
finding the best solution to the problem. There has been done a lot of research to raise the knowledge
about the AMS, but the AMS firmware could not be obtained. We have created a smarthub that uses
the instantaneous power provided by a different power meter to calculate priorities with an algorithm,
which processes this information with possibilities for extensions. The SmartHub can communicate
with up to 7 heat devices and regulates them simultaneously by using the algorithm and to even out
the consumption.

Power control by regulating devices is not a new technology, but the interface against the AMS is rel-
atively new and there is little specific information about the measuring information to be found. The
group came up with working result for a smart meter and this has taught us a lot about programming,
research and PCB design.

Version Control
Version1 Status2 Date3 Change4 Person5

0.1 Draft 2017.01.09 Started on introduction E.S, S.H,
J.R.M

1.0 Final 2017-05-13 Final product E.S, S.H,
J.R.M

Table 1: Version Control

1Version Shows the Version number from 0.1 to 1.0 which is the last for the Final report.
2Status is Draft, Research or Final
3Date ISO format: yyyy-mm-dd
4Changes describes changes made since the previous version
5Author is the one who made the changes

Preface
This report is a product of a bachelor thesis in ELE301 at the University of Agder. The task “AMS
interface for charging the blue battery” is one out of three bachelor thesis regarding “Charging of the
blue battery” [7.2] given by assistant professor Geir Jevne. It is solved with NRF52 microcontrollers
and new hardware that is required.

This report is intended for c programmers and electronic engineers working with smarthub solutions.
We would like to say thank you to assistant professor Geir Jevne and assistant professor Ken Henry
Andersen for helping us as our supervisors with equipment and knowledge.

Grimstad 15. May 2017 Eivind Stendal, Jan Roar T. Mydland and Sondre Håverstad.

¨

Contents
1 Introduction 1

1.1 Background . 1
1.2 Problem statement . 1
1.3 Literature review . 1
1.4 Prerequisites and Limitations . 2
1.5 Problem solution . 2
1.6 Project plan . 3
1.7 Report outline . 4

2 Theoretical background 5
2.1 Smart power meter(AMS) . 5
2.2 M-BUS Tranceiver . 5
2.3 Singlephase energy meter with M-Bus interface . 6

2.3.1 Connecting via M-BUS . 6
2.4 M-BUS protocol . 8
2.5 Universal Asynchronous Receiver/Transmitter(UART) protocol 11
2.6 Protocol research . 12

2.6.1 Zigbee . 12
2.6.2 Z-wave . 12
2.6.3 WIFI . 12
2.6.4 Bluetooth 4 low energy . 13
2.6.5 Thread . 13
2.6.6 Universal powerline bus . 13
2.6.7 Insteon . 13

2.7 The nRF52 . 14
2.8 Design patterns . 14

2.8.1 Event driven . 14
2.8.2 Finite state machine . 14
2.8.3 Multitasking . 15
2.8.4 FreeRTOS . 15

2.9 Powering and loads . 17
2.9.1 Switch mode power supply . 17
2.9.2 Loads . 17

3 Solution 18
3.1 Requirements . 18

3.1.1 Functional requirements . 18
3.1.2 Non functional requirements . 18

3.2 Design Specifications . 19
3.2.1 Master - slave protocol . 19
3.2.2 Hardware . 19
3.2.3 Master hardware specification . 20
3.2.4 Software tools . 21
3.2.5 Master software . 21
3.2.6 Slave hardware specification . 23
3.2.7 Slave software . 24

3.3 Implementation . 25
3.3.1 Code imlementation . 25
3.3.2 Nordic UART protocol . 25
3.3.3 Priority algorithm . 28
3.3.4 Master memory allocation . 30
3.3.5 Master block schematic software . 31
3.3.6 Master hardware . 35

3.3.7 Slave software . 42
3.3.8 Slave code implementation . 43
3.3.9 Slave hardware . 46

3.4 Validation & Testing . 49

4 Discussion 50

5 Conclusion 51

6 References 52

7 Appendices 1
7.1 Appendix A - Abbreviations & Glossary . 1
7.2 List of Figures . 2
7.3 Appendix B - Meeting/Gantt diagram/Timesheets . 4

7.3.1 Given Task . 4
7.3.2 Guidance meetings . 5
7.3.3 Group meetings . 9
7.3.4 Gantt diagram . 25
7.3.5 Timesheet Eivind Stendal . 26
7.3.6 Timesheet Sondre Håverstad . 30
7.3.7 Timesheet Jan Roar T. Mydland . 37
7.3.8 Timesheet Total . 43

7.4 Appendix C - Press release in Norwegian . 44
7.5 Appendix D - Test reports . 45

7.5.1 Testing of the simple M-BUS transceiver circuit 45
7.5.2 Testing of the LM317 - 12V to 3v3 regulator circuit 50
7.5.3 Testing of the complete slave device circuit . 53
7.5.4 Testing of the LT1072 - Buck boost converter circuit 55
7.5.5 Testing of the complete master circuit . 58
7.5.6 Test master software . 60
7.5.7 Test slave software . 63

7.6 Appendix E - Hardware schematics . 65
7.6.1 BOM Master . 65
7.6.2 Master schematics & overview . 66
7.6.3 Result master PCB . 73
7.6.4 BOM Slave . 74
7.6.5 Slave schematics & overview . 75
7.6.6 System hardware result . 83

7.7 Appendix E - Software diagrams . 84
7.7.1 Symbols description . 84
7.7.2 Thread: uart_search_thread . 85
7.7.3 Thread: uart_thread . 88
7.7.4 Thread: controller_thread . 91
7.7.5 Thread: send_data_thread . 106
7.7.6 Function: ble_nus_c_evt_handler . 110
7.7.7 Function: nus_data_handler . 116
7.7.8 Header file: m_bus_receiver.h . 122

Group 8 Bachelor’s thesis

1 Introduction

1.1 Background

In the autumn 2016, power companies started installation of the new AMS smart meters after orders
from Statnett and Norwegian Water Resources and Energy Directorate(NVE)[1]. AMS meters will
replace all the conventional power meters that is connected to the Norwegian power grid, there are
approximately 2.9 million power meters that are to be replaced, spread over 111 different power firms[1].
According to NVE 15-20% of the meters are to be replaced by the end of 2016, approximately 70%
during 2017 and with the remaining 10-15% before January 1. 2019, with an estimated investment cost
of 10 billion NOK[1].

The AMS meter will measure the instantaneous power consumption, production and power quality in
each individual measuring point with a fixed interval[2]. Mainly done to get a better view of the power
consumption in Norway, and making troubleshooting easier. This information shall also be available for
3rd party developers[2].

The power consumption in Norway is not even throughout the day, and the power distribution net must
be designed for the peak periods[3]. By implementing AMS the power distribution companies can have
different electricity price during a day, and they can make it more economical for the customer to have
a lower consume in the peak periods, which can slow down the expansion of the power network. The
power companies may also start with over consumption price as they have done before, a higher consume
price if you are over a certain limit. This will hopefully make people more aware of how much power
they are consuming.

1.2 Problem statement

The problem will consist of a system that controls devices based on the instantaneous power that the
AMS smart meters provides, and make the house self adapt to the access of power. The system should
lower the power peaks of the system and make it more constant throughout the day. The central device
in this report will be called the master.

Main goals:

M_1: A central device should read instantaneous power consumption from AMS.

M_2: Use the instantaneous power consume to regulate minimum one heat source.

M_3: The central device should control the heat sources based on priorities.

M_4: Propose a communication solution between central device and heat sources.

Sub goals:

S_1: The central device should communicate with more then one heat source.

S_2: The central device should have information about the temperature related to the heat source.

S_3: The central device should have an user interface for configuration.

Expected result The group expects to finish the main goals and the sub goal S_1 and S_2. If the
work is going faster then expected, S_3 will be started on as well.

1.3 Literature review

The most used literature in this report is from The Norwegian Water Resources and Energy Direc-
torate[1][2]. Regarding the software research FreeRTOS [4] and Nordic Semiconductors [5] homepage
are well used as references.

Versjon (1.0) page 1 of 54

Group 8 Bachelor’s thesis

1.4 Prerequisites and Limitations

The project has encountered problems with the AMS smart meter. Agder Energy has informed us that
we will not get access to the firmware before mid May, because it is still under testing and not officially
released. This means that we must come up with an alternative solution otherwise the main goal of the
project is lost.

The main goal M_4 is about sending a data packet between central device and heat devices and not how
it is sent, which means the project may not include a optimal communication protocol. For instance,
security in the protocol will not be considered.

1.5 Problem solution

The system shall move the consumption of the system from the peak-periods to the non-peak periods
without reducing the comfort of the customer. A micro-controller will be used to regulate the system.
Since we are not able to receive an AMS in time, the master has to obtain the data from a power meter
with an Meter-Bus(M-Bus) interface.

The central and heat devices will be implemented with a micro-controller that supports a wireless
technology. Under in figure 1 there is an example of how the system could be implemented in an
apartment. In this figure 1 heat devices will be called slaves and the central unit are called smarthub.
Typical devices that will be controlled by a slave are heat devices like electric radiator, underfloor heating
and boiler. The heat devices and central/smarthub should be powered by the net and not by batteries.

Figure 1: Usage example

Versjon (1.0) page 2 of 54

Group 8 Bachelor’s thesis

1.6 Project plan

In the figure 2 we can see the work plan with calculated hours, there has also been made a time-line
Gantt diagram, in the appendix. see figure 59.

Figure 2: Work plan

Versjon (1.0) page 3 of 54

Group 8 Bachelor’s thesis

1.7 Report outline

The rest of the project structure is as follows:

2 Theoretical background
Chapter 2 contains research and background knowledge that concerns the solution in chapter 3.

3 Solution
This section is divided into 4 subsections requirements, design specification, implementation and val-
idating & testing. The Requirements describes functional and non functional requirements that will
most likely be implemented in the project; Design specification describes how the problem will be solved
with simple diagrams and text, it answers to the research in chapter 2 Theoretical background; while
the implementation describes how the problem is solved.

4 Discussion
The discussion will be about the project solution, main goals, sub goals, what we have learned and what
we could have done differently.

5 Conclusion
This section includes a summery of the task and how the group archived based on the main and sub
goals.

Versjon (1.0) page 4 of 54

Group 8 Bachelor’s thesis

2 Theoretical background

2.1 Smart power meter(AMS)

Figure 3: Kamstrup AMS
smart meter [6]

The new AMS smart power meters shall replace the existing analogue
meters in today’s power grid[1]. AMS measures instantaneous power at
equal intervals and saves the values at approximately every 10 seconds
[2]. This information is logged and uploaded to power companies own
server at intervals of 10 to 60 minutes.

In addition to reading the instantaneous power, the meter will be to
record voltage and current at the inlet of the house separately, and
along with the measured values of all three phases with the same in-
terval. This will help make troubleshooting power lines easier and more
efficient; ensure voltage quality to the end user; Makes it possible to
detect ground faults in all subsystems connected the AMS meter, in
order to save power consumption and increase efficiency in the power
grid. [2]

By this introduction of AMS, the power companies are imposed by the
Norwegian Water Resources and Energy Directorate(NVE) to make
the meter data available to the customer through the internet (mobile
app) and a standardized electrical interface (EN 13757-2) [2]. Through
this connection also called HAN interface (ISO/IEC 8877) the cus-
tomer shall be given access to the information mentioned earlier, free
of charge [2]. This information will be used in this project to develop a
system that reduces power peaks and to equalize the power consump-
tion throughout the day.

2.2 M-BUS Tranceiver

To receive information, AMS meter offers the HAN interface (ISO/IEC8877). In order to read this
information there must be made a receiver that can interpret the M-Bus protocol (EN137572), which
is sent out on the interface [2].

M-BUS is a German developed serial bus protocol, specially designed considering the remote reading
of measurements, in this case the power consumption. It is designed to keep a periodic reading of the
devices connected, such as power meters in several houses [2].

The information sent from HAN interface and out on the “Two-Wire M-Bus” will be marked with an
OBIS code, which is an identification of the value that is sent by the smart meter [7]]. These OBIS
codes will be equal on all AMS meter installed, to ensure that customers can use the same reading device
regardless of AMS meters used [2].

Based on this information and since it has not yet been created a product that does the job. There
must created a M-Bus device that can receive this information and by using OBIS codes, convert this
information into something the microprocessor can understand.The developers of M-Bus has developed
in cooperation with Texas Instruments a component (TSS721A)[8] containing core logic to a M-Bus
transceiver that is a good starting point and something to take advantage of in this task[9].

Versjon (1.0) page 5 of 54

Group 8 Bachelor’s thesis

2.3 Singlephase energy meter with M-Bus interface

Figure 4: Energy meter with M-BUS in-
terface [10]

Figure 4 shows the energy meter that is used in this project.
Despite the small drawback that this is a lighter version of an
energy meter then the AMS smart meter that was intended
to be used. It still offers M-Bus protocol interference. This
energy meter gives information about power (Total and Par-
tial), voltage, current, active and reactive power [11]. In this
project the information about active power is the most in-
teresting. The energy meter also has a feature that saves all
the data/registers in case of a power failure.

2.3.1 Connecting via M-BUS

Following information about the energy meter are collected
from the data sheet of the meter [11]. The energy meter of-
fers automatic detection of transmission rates, although the
transmission rates have to be either 300, 2400 or 9600 Bau-
drate. The energy meter does not respond to unknown queries. The following telegrams are supported:

• Initialisation—SND_NKE—Response:0xE5

• Reading meter—REQ_UD2—Response:RSP_UD

• Changing primary address—SND_UD—Response:0xE5

• Reset Tpart—SND_UD—Response:0xE5

In this project there is only Initialisation and Reading meter that is used, these two are the only
telegrams that are described in more detail underneath here.

Initialisation: The telegram structure SND_NKE is used in order to initialise the energy meter.
Figure 5 shows a detailed description of the actual telegram structure. The response from the energy
meter is expected to be hexadecimal value of E5. More detail about SND_NKE is found in next section
2.4.

Figure 5: SND_NKE telegram structure in detail [10]

Reading response: The telegram structure REQ_UD2 is used in order to read out the values from
the energy meter. The response from the energy meter is sent in a RSP_UD telegram structure, as seen
in figure 6. Also notice that all the values are sent in one packet after sending an request. More detailed
information of the telegram structures REQ_UD2 and RSP_UD can be found in the next section 2.4.

Versjon (1.0) page 6 of 54

Group 8 Bachelor’s thesis

Figure 6: Request from energy meter (RSP_UD) [10]

Figure 7 shows a more detailed figure of the telegram structure in figure 6.

Figure 7: More detailed figure of the request from energy meter (RSP_UD) [10]

The next figure 8 shows where the different values are stored, how they are stored, and also what unit
the values are in.

Versjon (1.0) page 7 of 54

Group 8 Bachelor’s thesis

Figure 8: Information about where the values are stored) [10]

The values of power which is the most interesting in this project are found in byte 52 and 53, also worth
to mention that the resolution is 10 W pr bits.

Changing M-BUS address: The default setup of the energy meter is typical with the primary
address set to 0 (0x00). One possible way to change the address is to change it directly on the device
itself. The following description is found in the energy meter documentation [11].

• In the menu, go for "U"

• Push long (≥ 3 sec) → ”MBUS −ADR”

• Push short → M-Bus address +1, push long → M-BUS address +10

• Once the desired address is selected, wait until the root menu comes back to validate

The other possible way is to use the Changing primary address telegram structure. This is done by
sending a SND_NKE telegram structure to the energy meter. A more detailed description of the
SND_NKE structure can be found in the next section 2.4.

2.4 M-BUS protocol

Figure 9: Block diagram M-BUS [9]

Meter bus (M-BUS) was specifically designed for
remote reading of measuring equipment, and sup-
ports up against hundreds of devices connected
to the same bus. M-Bus consists of one mas-
ter and several slaves connected in parallel with
each other over a two-wire bus and reads mea-
surements periodically [9]. The slaves can‘t com-
municate with each other, so there has to be a
Master-Slave structure. M-BUS support remote
powering of slaves and works in a (Half Duplex)
fashion. The wire named (MBus+) is kept at con-
stant 36V in order to supply the slaves with power. The other wire (Mbus-) switch between 0 and 12V,
giving either 36V or 24V. The difference between (MBus+) and (MBus-) determines if it is a one or
zero being transmitted. 36V between them corresponds to a logical "one" and 24V to a logical "zero".
This gives a improvement range, because the devices do not care if the bus voltage at logical "one" is
36 or 19. The receivers only sense and reacts to a change in 12V between the wires.

Versjon (1.0) page 8 of 54

Group 8 Bachelor’s thesis

Protocol: Underneath here comes a description of the protocol, this information is based on informa-
tion found in the M-Bus description documentation [9]. The protocol that is used between master and
slaves is a asynchronous serial bit transmission, which is equivalent to the UART protocol described in
the next section [2.5]. Figure 10 shows an example of a transmission of one character from the master
to a slave.

Figure 10: Transmission of a character in calling direction [9]

Some requirement must be taken in order to get the transmission to work. There must not be a pause in
between two telegrams. The second requirement is that the eleventh bit, which is the "stop" bit, must
be a logical ’one’, equivalent the "start" bit has to be a logical ’zero’, in order to start transmission. As
seen on the figure 10 the bits are sent in an ascending order, least significant bit first (LSB).

Figure 11: Telegram frames [9]

There are four different telegram frames that is used in the communication between a master and the
slaves in a M-Bus system.

• Single Character: Consist of just one character, typically hexadecimal value E5. Typical usage
of this is to acknowledge a receipt of transmission.

• Short Frame: Frame with a fixed length, starts with the hexadecimal value of 10 and stops
with the hexadecimal value of 16. In between these two we find the C-field, A-field and a check
sum. The check sum can be found by adding C-field and A-field with each other. This telegram
structure is used when sending a SND_NKE telegram.

• Control Frame: This frame is just a short version of the Long Frame. With a fixed L_field of
3. This telegram structure can be used when sending a SND_UD or an RSP_UD.

• Long Frame: The long frame starts with the hexadecimal number 68 followed with the length
(L field) that is sent twice, then the start value of 0x68 is sent one more time. L field is build up
with the user data plus 3. Then comes C field, A field and CI field. The checksum is build up over
the same area as the length field, and the last byte to be sent is stop with a hexadecimal value of
16. This telegram structure is used in the same way as the control frame, that means that it is
used when sending SND_UD or RSP_UD telegrams.

Versjon (1.0) page 9 of 54

Group 8 Bachelor’s thesis

The different fields: Here comes a short description of the different fields in the telegram structures.
All fields have a length of 1 byte, corresponding to 8 bits. This description is based on information
found in the M-Bus description documentation [9].

• C field The C field is also called Control field or function field, this field specifies the direction of
the data flow. It is also responsibly for various tasks in both the calling and replying direction.

Figure 12: C-Field [9]

Figure 12 shows a more detailed overview over the C-field. Bit 7 is not used yet, and bit 6 is used
to indicate the direction of data flow. FCB bit can be used to indicate successful transmission, if
the expected reply is faulty the master sends a new telegram with FCB bit set to 1. FCV is set
to 1 if FCB is used. In replying direction, the slave uses ACD to indicate transmission of Class 1
data. DFC (data flow control) is used to tell master that the slave can‘t accept no further data.

• A field This is the address field, which is used to identify the slaves. Addresses from 1 to 250 can
be used, address 254 and 255 is used in broadcasting to the slaves.

• CI field The CI field is called the control information field, used in the telegram structure in
order to distinguish between the formats of the long and control frame. Also implements variety
of different actions in the master and or the slaves.

• Check sum This can be used to recognize transmission and synchronization faults. Calculated
by adding the different fields mentioned above here, not taking care of carry digits.

Underneath here is a figure 13 of the control codes used in the M-Bus protocol. The interesting part as
seen in the previous section 2.3 is SND_UD, REQ_UD2 and RSP_UD.

Figure 13: Control codes of the M-Bus protocol [9]

Versjon (1.0) page 10 of 54

Group 8 Bachelor’s thesis

2.5 Universal Asynchronous Receiver/Transmitter(UART) protocol

Figure 14: Block diagram of UART [12]

As seen in previous section 2.4 the M-Bus
protocol is equivalent to the UART protocol.
Underneath here follows a small description
of the UART communication protocol, this
information is based on information found in
All about Circuits site regarding the UART
protocol [12]. UART is a robust, moderated-
speed and full-duplex communication proto-
col. Basic UART only consist of three wires.
TX transmission serial data, RX received se-
rial data and ground. There is no need for a
clock signal, the receiver and transmitter is set up to communicate on a specific clock signal. Figure 15
shows a typical UART sending of a byte. Consisting of a start bit, stop bit and 8 bits data which is
equal to a byte.

Figure 15: Sending of a byte [12]

• Start bit This bit indicates the start of a one-byte sending. Typical this bit is logic low, because
the idle state is typical logical high.

• Stop bit This bit is typical logical high, the same as the idle state.

• Baud rate This is the approximated rate that the data can be transferred at, referred too as bits
per second.

• Parity bit This bit is used in error detection. There are two types, odd parity and even parity.
Odd parity is logical high if the data byte contains an even number of logical high bits, and even
parity is the opposite of that.

Versjon (1.0) page 11 of 54

Group 8 Bachelor’s thesis

2.6 Protocol research

This section is about the communication protocol between the heat device and the master/ central
device.

A system that is easy to implement in an existing building without new wiring is necessary to keep the
cost and work to a limit. This is a small recap of the most popular protocols in 2017.

2.6.1 Zigbee

Zigbee is a protocol using radio IEEE 802.15.4 wireless technology to communicate. It is a widely used
protocol among many producers in the world. What makes Zigbee a relevant protocol is the ability
to connect in a mesh network with low power consumption with unlimited devices [13]. In a report
comparing other protocols the zigbee uses around 185 µJ/bit, 0.035706W when transmitting 24 bytes
of data and sends 192 bits/s[14]. ZigBee offers the opportunity to connect energy harvesting product
and self powered devices.

• Energy = 185 µJ/bit

• Power consumption = 0.035706W when transmitting 24 byte

• Bits per second = 192 bps

• Distance 10-100 meters

2.6.2 Z-wave

Z-wave is based on the same concept as Zigbee, but the background of the idea is to make it simpler
and cheaper, based on plug and play system [15]. Z-wave is today the leading technology in wireless
home control with over 1700 products [16]. The mesh of Z-wave device can have up to 232 devices and
they can all be used as repeaters except for those battery devices. This is because a device cant sleep if
used as a repeater and therefore uses more power. Z-wave also support IP architecture.

2.6.3 WIFI

WIFI is already integrated in most houses which makes a good base. Laptops, mobile devices and game
consoles are using this technology and it is working great for there purpose. However WIFI is not a low
energy protocol that works perfectly for low energy devices. It uses 0.00525 µJbit which is very efficient,
however current consumption does not reduce when throughput is reduced. WIFI uses around 0.210 W
for sending one UDP packet of 40Mbps [14]. This is much higher then other compared protocols [14].

• Energy = 0.00525 µJbit

• Power consumption = 0.210 W when transmitting 40MB

• Bits per second = 40 Mbps

• 150 M

Versjon (1.0) page 12 of 54

Group 8 Bachelor’s thesis

2.6.4 Bluetooth 4 low energy

Bluetooth technology is a known protocol among most people, used for personal connectivity. The newer
version bluetooth low energy(BLE) is a low energy protocol and it is very energy efficient. It was not
made for smarthome applications and for that reason it is maybe not suited to the job as good as other
protocols. However Bluetooth are working on a prototype with mesh network specifications, and this
combined with the efficiency of BLE can be a good combination [17][14].

• Energy = 0.153 µJ/bit

• Power consumption = 0.147 mW

• Bytes per second = 960 bps

• Range 10-30M

2.6.5 Thread

Thread is a brand new protocol from 2014 founded by 7 companies including Google and Samsung.
Based on IEEE 802.15.4 RF which is the same as Zigbee but they focus on the 6LoWPAN which Zigbee
only got as an upgrade. There main task was to make an efficient, simple and trustworthy system that
could handle over 250 devices [18].

A new smart mesh control makes it possible for nodes to go in sleep mode and not having to check in.
Messages for sleepy nodes is buffered by their parents and sent when they wake up [18].

2.6.6 Universal powerline bus

Universal powerline bus(UPB) is a protocol that communicate through the powerlines and can have up
to 250 units and a range over one mile [19]. Every UPB central can have 250 different network ID to
differentiate from the neighbour. If you and your neighbour got the same network ID you can control
each others devices which is not to prefer [15]. A simple ID configure is all it takes and the system
should not interact with any other systems unless there is 250 other close systems [18].

2.6.7 Insteon

Insteon is a protocol that uses powerlines and wireless connection. The protocol can have unlimited
devices connected and are only limited by memory. It uses mesh network with both wire and wireless
connections. By using bridges you can connect with many other types of systems [20].

Versjon (1.0) page 13 of 54

Group 8 Bachelor’s thesis

2.7 The nRF52

Nrf52 is a powerful ultra-low-power "system-on-chip" from Nordic Semiconductors and built for the IoT
market . The nRF52 is a microcontroller build around a 32-bit ARM Cortex-M4 CPU with 512kB +
64kB RAM and with a built-in BLE Transceiver with a lot of functions making it perfect for many
applications. The microcontroller also comes with a SDK with many good functions and examples[21].

2.8 Design patterns

Figure 16: Example of an event driven software

There are several ways to implement the soft-
ware design patterns. A small description of
some different patterns can be found under-
neath here.

2.8.1 Event driven

In an event driven programming the flow of
the program is determined by the occurrence of
events [22]. The software or microprocessor typ-
ically waits in a low power state until an event
occurs (could typical be a hardware interrupt).
Then a callback or event handler function will
be called to process this event, after the event
it returns to the waiting state. Figure 16 shows
a small example of an event driven software.

Most of the SDK examples from Nordic Semi-
conductors are based upon the event driven al-
gorithm [23].

2.8.2 Finite state machine

Figure 17: Example of an Finite State Machine soft-
ware

This can also be referred to as FSM. The web-
page All about circuits[24] have a net way to
explain what FSM is; "A finite state system is
a system where only a set number of real, de-
fined states can exist". Another way to explain
this could be to say that no matter where the
code is, it will always end up back to a known
state again. In this patterns it‘s easy for the
programmer to force the software to execute in
a specific order.

Figure 17 shows a very simple example on how
this software pattern could be implemented.
This could be a simple program to turn on and
off Light Emitting Diodes, and the received sig-
nals could be a switch that was pressed.

FSM could of course be implanted inside a func-
tion as well.

Versjon (1.0) page 14 of 54

Group 8 Bachelor’s thesis

2.8.3 Multitasking

The concept of multitasking is to rapidly switch between tasks, to make it appear as if each task are
executing at the same time [25]. A task is sometimes referred to as a thread.

Figure 18: Multitasking [25]

Figure 19: How multitasking works [25]

It is the job of the scheduler in an operating system to decide which task that is allowed to run at a
specific time, and to switch between the different task [26].

RTOS: A Real Time Operating System (RTOS) is designed to provide a predictable execution pattern.
This is especially of interest in an embedded system, where there often is a real time requirements. This
means that the scheduler in a RTOS is responsible to execute a task in a specific time after an event
has occurred [26].

2.8.4 FreeRTOS

One type of RTOS that is small enough to run on a microcontroller is FreeRTOS. FreeRTOS provides
a real time scheduling functionality, inter-task communication, timing and much more. See FreeRTOS
web page for more details [26].

Figure 20: Task states in FreeRTOS [27]

Figure 20 shows the different states a task can have, this
information and a more detailed information is found at [27].

- Running: The task that is currently executed is lo-
cated in this state, and there can only exist one task
in this state (if the processor just consist of a single
core).

- Ready: Task that has been unblocked is placed in
this state, and they are waiting on a higher priority or
equal priority task that is already in the running state.

- Blocked: A task that is waiting on a event to occur
is placed in this state. Typical a task is blocked to
wait for a queue, semaphore, event group, notification
or semaphore event.

Versjon (1.0) page 15 of 54

Group 8 Bachelor’s thesis

- Suspended: In these state only tasks that has called
vTaskSuspend() is placed, and in order to exit this
state vTaskResume() is called.

More details about FreeRTOS Underneath there is a list off more relevant information regarding
FreeRTOS such as Heap memory, tasks, queues, binary semaphores, mutexes and event groups. All of
this information and much more detailed information is found in [28].

- Allocating heap memory: Figure 21 shows in A the total allocated memory that is defined in
configTOTAL_HEAP_SIZE. In B one task is created and this takes up a small part of the total
heap memory. And in C there are three task that has been created.

Figure 21: Visuel heap memory allocation [28]

- Tasks: Each task is a small program, implemented as a C function. They must only return a void
and take a void pointer parameter. A task will normally run forever in an infinite loop, and will
not exit. A single definition of a task can be used to create any number of tasks.

- Queue: A queue is used to hold a finite number of fixed size data items. These could either be a
copy of the data, or refereed as a pointer to a specific data.

- Binary semaphore: This is used to implement synchronisation between tasks, or between a task
and an interrupt. This can be seen as a queue with only one item.

- Mutex: Mutexes is used to guard a precious resource.

- Software Timers: A software timer is used to execute a specific function at a set of time. More
specific a callback function will be executed when the timers period expires. A software timer
could be either be a one-shot timer or a auto-reloaded timer.

Versjon (1.0) page 16 of 54

Group 8 Bachelor’s thesis

2.9 Powering and loads

2.9.1 Switch mode power supply

Switch mode power supplies are widely used and often replacing linear AC to DC converters, a buck
boost converter is popular because of it’s efficiency. It uses a inductor to store energy and boost the
voltage by switching current through it at high speed, the voltage builds up until the wanted output is
reached, which is higher than the input voltage.

2.9.2 Loads

Figure 22: Relay [29]

In a normal Norwegian household, the largest fuses for a
normal wall socket can deliver 16 ampere(A), which gives
3600 watt(W) with 230 volts(V), from equation 1. In order
to control a 3600W, we need a device that can handle such.
Devices that can be used for this purpose and is able to
break these loads can be created out of TRIACS in form of
solid state relay, transistors, MOSFETS or relays. The three
first options needs external circuits and heat sink in order
to create a stable and viable circuit.

P = U · I = 230V · 16A = 3600W (1)

Versjon (1.0) page 17 of 54

Group 8 Bachelor’s thesis

3 Solution

3.1 Requirements

Figure 23: System overview

3.1.1 Functional requirements

- The master should read instantaneous power consumption from power meter with M-BUS(Changed
from AMS).

- Use the instantaneous power consume to regulate minimum one slave device.

- The slaves should have priorities which the master can use for decisions.

- The master have an algorithm that should turn on and off slaves based on priorities, price(time)
and power consumption.

- Slaves must have some sort of switch/relay in order to turn on and off devices.

3.1.2 Non functional requirements

- Master and slave should be able to get powered from 230VAC.

- Slaves must have the ability to read temperature and provide this to the master for prioritiz-
ing.

- The master should have some sort of M-BUS transceiver.

- The master should have the ability to receive configuration data from a user interface.

Versjon (1.0) page 18 of 54

Group 8 Bachelor’s thesis

3.2 Design Specifications

3.2.1 Master - slave protocol

Choosing protocol There is many protocols to choose from with different specifications that are
doing more or less the same job. The project need a standard that works great on small micro-controller
beacons. After reading about the different protocols the most attractive protocols for the purpose is
Zigbee, Z-wave and Thread. Z-wave is based on a plug and play system and may not be suitable for the
purpose. Zigbee and Thread are attractive protocols because of the energy efficiency and mesh network.
However when Bluetooth is launching their mesh network support it might compete with Zigbee and
Thread.

For the task to be done there is a limited time of 3 months left which needs to be considered. The group
has background-knowledge with Nordic Semiconductors nRF52 from previous project, and the software
has not been released for Zigbee and Thread yet. Consequently the available nRF52832 with Bluetooth
is chosen for the project [30].

SDK version The master can be connected with up to 8 BLE devices who communicates with the
Nordic UART service. The newest 132 softdevice v4.0 from Nordic Semiconductors supports up to 20
peripherals and may be easy to implement, but it is not supporting freeRtos yet and will therefore not
be implemented in our system. To choose a brand new SDK version also means less examples and tips.
This taken into consideration the SDK 12.2.0 will be used in this project.

BLE Services The SDK V 12.2.0 comes with 34 premade BLE services [31]. The optimal solution
would be to make our own service, however the BLE protocol is not the main task and therefore we
choose to use a premade service. The group has some experience with NUS (Nordic UART Service)
from last semester. NUS service is a solution that uses the UART principle over BLE and can send 20
bytes of data at once, which is more than enough for the given task. Security of the BLE will not be
taken into account.

3.2.2 Hardware

Figure 24: PCB tools

This project will contain several layouts of Printed Circuit
Board(PCB) to be constructed, one PCB for the master and at
least one Slave PCB. The master or slave is complex, so every part
of the design will be individually tested before they are merged
together. The benefit of this is that it makes it possible to reuse
the same circuits in both Master and Slave design and only create
connection between the schematics. This will save both time and
effort to complete the task in time.

Simulations will be done in LTSpice and the PCB layout will be done in Altium designer that the
University of Agder have licenced, which both are familiar to us from previous work. As an extension
to the PCB design, Saturn PCB design will be used as a tool for calculating trace thickness, spacing,
via’s and creepage distances and so on, to get the best design possible.

Master and the Slave PCB, will be based on a template for an Arduino shield provided by forum.arduino.cc,
template to be found at: [32].

Versjon (1.0) page 19 of 54

Group 8 Bachelor’s thesis

3.2.3 Master hardware specification

Master Hardware The Master main task is to collect the instantaneous power from the AMS smart
meter(watt-meter w/M-BUS), calculate priorities and act by turning on/off or regulate Slave devices.
To receive information from the AMS, the master need a M-BUS transceiver which converts UART
messages to Meter-Bus(M-BUS) messages and present them to the watt-meter, which it will respond
to. It would be beneficial if the Master could be supplied from the 230VAC.

In order to do that the design will be equipped with a 12V to 3V3 regulator which retrieves 12VDC
from a 230VAC to 12VDC transformer as shown in figure 25, 3V3 will be provided to the nRF52 in
order to power the master and make it independent of external power supply. The 12VDC will also be
boosted up to a 34V by a buck boost converter to give enough voltage to the M-BUS, which will allow
the communication between the watt-meter and the M-BUS transceiver.

Figure 25: Master block diagram

Versjon (1.0) page 20 of 54

Group 8 Bachelor’s thesis

3.2.4 Software tools

Compiler Keil MDK-ARM and IAR Embedded Workbench is the recommended integrated devel-
opment environment(IDR) for nRF52 [5]. UiA got licenses on Keil and is therefore the used IDR for
the project, but the licence is limited to 32kB hex files. The code might be bigger than 32kB and the
solution to this is to program in Keil and compile with GCC. nRFgo studio will then be used to program
the micro controller.

Analyze Digital signal analysis will be done by using Saleae[33]. UART will be used for the commu-
nication between power meter and master, and the nRF52 only got one UART instance. The logger
function is also using UART which will make a conflict. Segger RTT will be used instead of the UART
logging, this solves the problem[34].

3.2.5 Master software

Figure 26 shows a mind map of the functionality of the master design. The master will be implemented
with a combination of threads using freeRTOS, events and state machine. Semaphores and mutexes
will be used to avoid read/write conflicts in the program and queues will be used to send data from one
thread to another. More information about different design patterns are found in 2.8.

To obtain the data from the M-BUS power meter mentioned in section 2.3 the master will use the
UART protocol on the micro controller. There has been made a c-code file and header file regarding
the different telegrams used to get connected to the M-BUS power meter described in section 2.3. The
header file can be seen in appendix 7.6.6.

Versjon (1.0) page 21 of 54

Group 8 Bachelor’s thesis

Figure 26: Mind map of how the master software could work

Versjon (1.0) page 22 of 54

Group 8 Bachelor’s thesis

3.2.6 Slave hardware specification

The slave has the ability to read or receive temperature from a device and transmit the values to the
master. Based on the information the slave provides the master, the slave receives instructions to turn
on or off the device that he is bound to follow.

To turn on/off devices the slave needs to be equipped with a relay that can turn off the devices. A relay
is a good solution because it is relatively cheap, easy to implement and have PCB mount possibilities.
We have a relay accessible and the coil is galvanic isolated from the switch. This is beneficial in this
case, because of the voltage which controls the relay is much lower than the load voltage.

There will be a 12VDC available from a 230VAC to 12VDC transformer connected to the PCB, the 12V
is also to be regulated down to 3V3, which is a duplication of the solution created to the master. The
relay coil needs 9V to operate the relay switch, also here the same 3V3 regulator will be created with
just a slight modification.

Figure 27: Slave block diagram

Versjon (1.0) page 23 of 54

Group 8 Bachelor’s thesis

3.2.7 Slave software

Figure 28 is an overview diagram on how a slave can be designed. This slave can be controlling an oven,
a boiler or electric floor heating, by sensing temperature and controlling a relay as a thermostat. The
slave can set his own priority based on the wanted temperature versus current temperate deviation. The
master can override the thermostat to turn it off based on the priority set by the slave.

Figure 28: Design specification for the slave device

Versjon (1.0) page 24 of 54

Group 8 Bachelor’s thesis

3.3 Implementation

3.3.1 Code imlementation

BLE code implementation master For the implementation of the master the "Nordic UART Ser-
vice Client" example is used as template[35]. To communicate with more then one slave the "BLE
Multi-link" example[36] is merged with the "UART Service Client" example. On top of this the "Ex-
perimental: BLE Relay Example"[37] is merged to add the functionality of letting the master be both
a peripheral and a central. This will make it possible for a phone with the nrftoolbox app to connect to
the master.

BLE code implementation peripheral For the implementation of the slaves/peripherals, the SDK
example "UART/Serial Port Emulation over BLE" is used as template and merged with the Two-Wire-
Interface(TWI) example[38][39].

3.3.2 Nordic UART protocol

BLE data and sending Figure 29 shows an overview of the data placement in the datagram, sendt
between master and slave devices. The figure 30 shows the dataflow between master and slave.

When sending a datapacket, ack will be set to 0 and an ack timer will be started. If the sender does
not receive any packet with ack = 1 before the timer runs out the sender will resend the packet. If the
packet gets lost again, it will not try to resend data.

Figure 29: Datagram

Versjon (1.0) page 25 of 54

Group 8 Bachelor’s thesis

Figure 30: Flowcontrol master/ slave

Versjon (1.0) page 26 of 54

Group 8 Bachelor’s thesis

Master setup The master has to be configured with the nrfToolbox app from Nordic semiconduc-
tors[40]. Inside the Toolbox you find a subsection wireless Nordic UART, connect to "El_hub_central"
and open the log by clicking on "Show log". You can now send text commands as shown in figure 31.

Power limits

Start by setting the power limits max_consume_limit(h) to the max power allowed by the
main fuse in the fuse box of the system. Example: 32A · 230V = 7360W -> "limith07368".

Set normal_max_consume_limit to a limit between max and preferred limit. If the con-
sume goes over this limit slaves in normal and low priority will be turned off. Example:
"limitn04000".

Set preferred_consume_limit(p) to a limit you want to stay under. If the power compa-
nies introduces overprice over a given limit then this is the limit you should use. Example
"limitp02000".

Clock

Send in the clock value. Example: "clock0726".

Max power of controlled device

Type "C" slaves has to be set up with a power value, for slave types see Figure 50. This is the
max power consume of the controlled device, this can be found at the nameplate. Example:
"slave022000".

Wanted temperature

Set wanted temperature on controlled device by slave(n). Example for setting value on slave
’1’: "temp0120" for 20◦ C or "temp0120-" for minus 20◦ C

Figure 31: Flowcontrol phone/ master

Versjon (1.0) page 27 of 54

Group 8 Bachelor’s thesis

3.3.3 Priority algorithm

Figure 32: Slave types

Priority The master will have 3 priority stages, high,
medium and low with 10(11) under priorities in each stage,
which means there is priorities from 0 to 30 as shown in fig-
ure 33. Different devices will have different default priority
number and not all devices got all priority levels. For in-
stance boiler got priority 28 in low priority and oven got 25,
meaning oven will always have a higher priority in low prior-
ity then a boiler. This sub priorities is mainly intended for
further development and is not used much in the prototype.

Figure 33: Priority distribution

Overconsumption The algorithm will get information
from the AMS meter about the consume. We have invented
three limits on the consume:

- preferred_consume_limit:

limit we want to be under

- normal_max_consume_limit:

limit we should be under

- max_consume_limit

limit we can not exceed

This limits has to be set by the user. If we exceed the first
limit, the algorithm is starting to order slaves to turn off
until the the consume is under the limit or there is no more
slaves to turn off. If the consume still rises and we are over
normal_max_consume the algorithm starts to turn off de-
vices in normal priorities as well. The same procedure ap-
plies for max_consume_limit and high_priority.

Versjon (1.0) page 28 of 54

Group 8 Bachelor’s thesis

Expensive hours In the close future the power companies will most certainly have changing consume
prices through the day, but we do not know how this will be for sure. This is an example on how this
can be solved. Since the AMS is not sending the price, the clock is our second option. The algorithm
will turn off devices in low priority if the time is between 07:00 -> 10:00 or 17:00->20:00 based on the
information in figure 34. The algorithm will not differentiate between weekends (left picture in figure
34) and weekdays (right picture in figure 34), but this should be implemented in a final product.

Figure 34: Consumption throughout the day in Norway [3]

Switch on devices When turning off a slave there is a chance that the total consume will go under
the consume limit that triggered the controller to turn off the slave. For not having the problem off
turning on and off a slave many times in a minute a timer is used on 5 minutes. All slaves share one
timer and every time a slave is turned off the timer is started. If the timer runs out the algorithm will
first check if the consume is under the preferred_consume_limit, and then search through all slaves and
turn on the slave with highest priority that is in off state. If there is more slaves with same priority it
will turn off the slave with the biggest temperature deviation. Consequently a slave might stay off for
5 minutes more than it has to.

Led and buttons master

Led 1 blinking: Scanning.

Led 1 on: connected to phone.

Button 2: Start BLE advertising for connection to the nRF Toolbox app.

Versjon (1.0) page 29 of 54

Group 8 Bachelor’s thesis

Figure 35: Memory error

3.3.4 Master memory allocation

When implementing FreeRTOS together with BLE and UART the program size started to grow. The
program became bigger then the default heap memory allocation for the softdevice and consequently
there was delivered a warning. Figure 35 shows one of the warnings, there was several warnings after this.
The memory was at last adjusted to the given values in the config file: ble_app_hrs_freertos_gcc_nrf52.ld
in: SDK\ examples\ ble_peripheral\ Central\ pca10040\ s132\ armgcc

FreeRTOS total heap size did also needed to be adjusted, in order to have the ability to implement all
threads, software timers and sow on. See section 2.8.4 regarding FreeRTOS for more information.

Versjon (1.0) page 30 of 54

Group 8 Bachelor’s thesis

3.3.5 Master block schematic software

This section shows a basic overview of the different threads, binary semaphores, queues, event groups,
hardware interrupts and software timers that makes up the software part in the master unit. In appendix
7.6.6 there can be found flowchart of all the different threads, including some of the functions that is
called inside some of the threads. More information regarding threads, semaphores, queues, software
timers and event groups can be found in section 2.8.4.

Figure 36: Block schematic software

Versjon (1.0) page 31 of 54

Group 8 Bachelor’s thesis

Binary Semaphores:

- m_ble_event_ready: Semaphore raised by ble_new_event_handler when there is a new BLE
stack event to be processed in the ble_stack_thread.

- slave_on_bin_semaphore: Semaphore raised by either slave_on_timeout when a slave has
been off for a given time or by ble_nus_c_evt_handler when a slaves own priority is increased.
This semaphores is processed in controller_thread.

- uart_search: Semaphore raised by uart_thread if the reading from the m_bus meater goes
wrong. This semaphore is processed in uart_search_thread.

- uart_event_rx_ready: Semaphore raised by uart_event_handle if there is a new event (Uart
data received) to be processed in the uart_search_thread or uart_thread.

- m_bus_timer_timout: Semaphore raised by m_bus_receiver_timer when there is time to
request a new data from m_bus meater. This semaphore is processed in uart_thread.

- power_received_controller: Semaphore raised by uart_thread when there is a new power
reading to be processed in the controller_thread.

Queues

- clock_hour: This queue is used to send the time (hours) from timer_handler to the con-
troller_thread. This is regarding the Expensive hours found in section 3.3.3.

- clock_minutes_from_app & clock_hour_from_app: These two queues is used to set a
new time. Sent from nus_data_handler and processed in timer_handler.

- power_msg_queue: This queue is used to send the recorded power from uart_thread to the
controller_thread.

- data_struct: Queue used to hold a struct that points to specific slave structures. This slave
structure contains the datagram packet that is sent between the different slaves and the master
unit, see section 3.3.2(Nordic UART protocol) for more information. This queue is set by the
controller_thread, and there are several function and threads that peeks the queue.

- slave_nr_send_data: This queue is received in send_data_thread, and it contains the specific
address of a slave. This queues is sent from different threads, functions and software timers.

- queue_limit_struct: This queue is used to set the limits sent in from the user, section 3.3.3
(Overconsumption) has a more detailed description of this. This queue is send out in con-
troller_thread, and this queue can be peeked in nus_data_handler.

- slave_reset: This queue is sent from on_ble_central_evt to notify the controller_thread about
a disconnected slave. The queue contains the address of the disconnected slave.

Event groups

- waiting_ack: This event group is used together with ack. More details of this can be found in
section 3.3.2 (Nordic UART protocol).

Threads

- ble_stack_thread This thread is responsible for handling BLE stack events. This thread is
waiting for the m_ble_event_ready semaphore to be raised, after that is calls ble_evt_dispatch
functions. More details is found underneath in paragraph 3.3.5.

- uart_search_thread This thread is responsible for initialization of the m_bus meter. This
thread sends a initialization frame on all available addresses (0-250), if there has been found one
or more address then the uart_thread will be started. A more detailed information in form of a
flowchart can be found in appendix 7.6.6.

Versjon (1.0) page 32 of 54

Group 8 Bachelor’s thesis

- uart_thread This thread will be started if there has been initialized one or more addresses from
the uart_search_thread. This thread is responsible for sending request to the m_bus meter,
and also read the data from m_bus meter. Inside this thread there is also a check to see if the
data from m_bus meter is correctly received. If the m_bus meter don‘t respond after a certain
time, then this thread will delete itself and the uart_search_thread will start over again. A more
detailed information in form of a flowchart can be found in appendix 7.6.6.

- controller_thread This thread is responsible for the priority algorithm that is described in
details in section 3.3.3. A more detailed information in form of a flowchart can be found in
appendix 7.6.6.

- send_data_thread This thread is responsible for sending data from the master to the slaves.
More details of this can be found in section 3.3.2 (Nordic UART protocol). A more detailed
information in form of a flowchart can be found in appendix 7.6.6.

Hardware Interrupts

- ble_new_event_handler: This is a event handler for a new BLE event. This function is called
from the SoftDevice handler, and it is called from an interrupt level.

- uart_event_handle: This is the event handler for the UART module. This functions is called
when an event occurs in the UART module.

Software timers

- m_bus_timer_receiver_timeout: Software timer used to request data from m_bus meter
after a certain time.

- slave_on_timeout: Software timer used to tell that a slave has been off for a certain of time.

- ack_timer_handler: Software timer used together with the ack. More details of this can be
found in section 3.3.2 (Nordic UART protocol).

- timer_handler: Software timer used to to keep track of time. timer_handler callback function
is called every second.

Inside ble_stack_thread Figure 37 found underneath here is just to show where the different
semaphores and queues related to ble_stack_thread is located.

Versjon (1.0) page 33 of 54

Group 8 Bachelor’s thesis

Figure 37: Process: ble_stack_thread

- ble_evt_dispatch: This function is responsible for dispatching a BLE stack event to all modules
with a BLE stack event handler.

- ble_nus_c_evt_handler: This function is called when there is a BLE stack event related to
data sent from a slave to the master unit. More information of this data can be found in section
3.3.2 (Nordic UART protocol). A more detailed information in form of a flowchart can be found
in appendix 7.6.6.

- on_ble_central_evt: This function is called when a slave gets disconnected from the master.

- nus_data_handler: This functions is called when there is a BLE stack event related to data
sent from control app. More details of this can be found in section 3.3.2 (Master setup). A more
detailed information in form of a flowchart can be found in appendix 7.6.6.

Versjon (1.0) page 34 of 54

Group 8 Bachelor’s thesis

3.3.6 Master hardware

Figure 38: 230VAC to 12VDC
Wall adapter [41]

230VAC to 12VDC transformer The 230VAC to 12VDC trans-
former is necessary for the system to be independent and encapsulated,
without the need for an external power supply. There will be little time
to make one by our own. In order to complete everything, it was there-
fore decided that it would be used a wall adapter like the one in picture
38 that will be customized to this project.

12V to 3.3V converter The master receives 12V from the trans-
former, this voltage will be regulated down by a known component
LM317, which is a widely used three terminal adjustable regulator
from Texas Instrument [42].

nRF52 is a 3.3V micro controller(µC) and therefor it will be con-
structed a 12V to 3.3V regulator, also to be duplicated and used in
the slave design. The circuit have its origin from the data-sheet [42]
and modified to fit this project. The circuit is shown in the appendix
under master schematics [7.6.3]. In order to get a stable 3V3 output,
the Voltage between OUT(Output) and ADJ(Adjust) pin will be held
at 1.25V constant, since there is an internal Zener diode, see figure
39, resulting in the desirable output will be 1.25V higher than Vadj
equation 2.

Figure 39: LM317 structure
[42]

Vout = Vadj + 1.25V (2)

Vadj =
Vout

1.25V
=

3V 3

1.25
≈ 2.4V (3)

This is solved by constructing a voltage divider between Out and ADJ
as shown by the resistors R1 and R2 in figure 40b or schematic [7.6.3].
The voltage across R1 will always be 1.25V so the rest of the voltage
lies over R2, because of the zener diode internally in LM317, see figure
39.

(a) LM317 9V voltage divider (b) LM317 3V3 voltage divider

Figure 40: Regulator pictures

Versjon (1.0) page 35 of 54

Group 8 Bachelor’s thesis

Capacitor C3 is placed in the start for filtering any irregularities the supply may produce. There is also
placed two capacitors C1 and C2 at the output, since capacitor C2 has a lower resonant frequency than
C1, these two capacitors filter a wider ranges of noise than if they were standing alone. As we can see
in figure 41, the (black) and (red) line together, forms the typical frequency output characteristics for
these two capacitors.

Figure 41: Capacitor filtering capabilities [43]

Figure 42: Wattmeter w/M-BUS inter-
face [10]

Wattmeter w/M-BUS interface This watt meter from
Saia Burgess[10] with M-BUS interface is going to be used
as a replacement for the AMS smart meter. It will deliver
the instantaneous power consumption whenever the mas-
ter asks for measuring values it responds. This should be
good enough to imitate the functionality to AMS meter This
meter is connected to the simple M-BUS transceiver 3.3.6
through the Meter-bus protocol. More information about
the watt meter can be found in section 2.3.

Versjon (1.0) page 36 of 54

Group 8 Bachelor’s thesis

Simple M-BUS transceiver When the watt-meter from Saia Burgess is to be used, there are several
factors to be considered. AMS meter used the M-BUS to supply the slaves with power, which the watt-
meter does not. In order to get it to work, there needs to be an alternative way to supply the watt
meter, it must also be another circuit that can transmit and then receive information over the M-BUS,
because the TSS721a either supports powering of the bus and it might not work with the AMS later on,
because it has not been tested against the AMS yet [8].

It was found an example of a M-BUS transceiver on GitHub, made by an user named RSCADA. This
M-BUS transceiver transmits and receives by using UART, with a separate buck boost converter that
generates 34V [44]. There will be used a different kind of buck boost converter, but the transceiver
will be used with some slight modifications. The circuit shown in in the appendix 7.5.7 worked well by
simulation, results shown in figure 43a and figure 43b, it also worked great under testing, the lab report
from the testing found in the appendix at section 7.5.1.

R8 = R8.1 +R8.2

R9 = R9.1 +R9.2

MBUS+ = 32V

R10 and R11.2 voltage divider:

Vrx =
(MBUS+) ·R11.2

R10 +R11.2
≈ 3V (4)

R8 and R9 voltage divider:

VT3base =
(MBUS+) ·R9

R8 +R9
= 12V (5)

Transmitting When nRF52 Transmits data over UART to the Tx pin in the circuit 7.5.7 on the
simple M-BUS transceiver figure 43a. The voltage generated when transmitting opens transistor T1
pulling down the voltage at the divider R8 and R9 (see equation 5) causes T3 to open because, the
voltage at the base is pulled down from 12V to ground, resulting in MBus− = 0V transmitting a
logical "one" on the M-BUS.

Receiving When receiving the signal on MBUS- the Transistor T3 opens slightly causing a voltage to
appear on base of transistor T2 which opens it and pulls the 3V (see equation 4) down towards ground,
causing a signal on the Rx pin.

(a) Simple M-BUS transceiver transmitting (b) Simple M-BUS transceiver receiving

Versjon (1.0) page 37 of 54

Group 8 Bachelor’s thesis

Simple M-BUS powering In order to get the simple M-BUS transceiver to work the supply wire
(MBUS+) needs powering. The PCB 12V available on the PCB, which can be used to power the bus
indirectly. The 12V can also be boosted to a voltage fit for powering the M-BUS, optimally the bus
power should deliver 36V, that should power the transceiver and the watt-meter M-BUS circuit. The
optimal M-BUS voltage is 36V but it is not defining anywhere in the watt-meter data-sheet but, it
should work fine with voltages much lower than that. It is then decided to lower the output to 34V to
have some margin if there should be some irregularities.

Figure 44: The origin of the buck boost con-
verter
[45]

The circuit are familiar for us from an earlier stage, and
is bases on LT1072 from Linear Technology, shown in
figure 44, which is a high efficiency switching regulator
with theoretical output off 65V [45]. The difference of
the original circuit in figure 44 is that the circuit is
to be modified to an additional voltage of 34V output
which is going to fit that purpose. The schematics can
be found in section 7.5.7.

The Boosted voltage is set by setting the right feedback,
VFB needs 1.24V when the right output occur in circuit
45, see equation 6, and the simulated resistor values at
figure 45.

The inductor that is used is a little too large, but the
components was available in the lab L = 150µF . C1
is raised from 25µF to 47µF since the current input
voltage is raised from 5V to 12V, The maximal ripple
current, in equation 3.3.6. Ripple current is 145mA by
simulating, from equation 9, which gives a RMS value
of the ripple current through the inductor 102.5mA 10,
making Pin = 1.23W equation 11. The output effi-
ciency is determined by the output voltage and the load, which is the resistor of the transceiver which is
about 22kΩ and the feedback divider in parallel Pout = 0.09W from equation 12, ideally the load resistor
should be much which would result in a better efficiency. In figure 46a the inductor ripple current shown
in Blue, also known as the input ripple current since it directly connected to the input source, see figure
46. The Green line shows the current through the diode, the current change direction when the current
through the inductor falls.

VO =
VFB · (R1 +R2)

R2
=

1.24V · (50kΩ + 2kΩ)

2kΩ
≈ 33.5V (6)

toff =
ui

uo · f
=

12

34V · 40kHz
≈ 8.8µs (7)

4i =
uo − ui
L

· ui
uo · f

≈ 800mA (8)

Iripple = 145mA (9)

IINrms =
145mA√

2
= 102.5mA (10)

Pin = IINrms · Vin = 1.23W (11)

Pout =
V 2
out

(1
22kΩ + 1

27kΩ)−1
= 0.09W (12)

Versjon (1.0) page 38 of 54

Group 8 Bachelor’s thesis

Ripple% = 100% · Vripple
Vout

= 0.42% (13)

Figure 45: Buck boost simulation circuit

(a) Ripple current inductor and diode

(b) Current input and output capacitor

Figure 46: Simulation results buck boost

Versjon (1.0) page 39 of 54

Group 8 Bachelor’s thesis

The M-BUS transceiver As mentioned in the theoretical background under section 2.2. Developers
of the M-BUS protocol suggests a component called TSS721A, that is designed by Texas Instrument
[8] that only needs a few external components like resistors and capacitors for operating as a slave
device. The slave support a half-duplex communication over M-BUS and convert the information over
to UART, which is presented to the µC or from UART to M-BUS sent from the µC. The schematic
with the M-BUS transceiver circuit is found in section 7.5.7.

Figure 47: Protective resistors M-BUS [8].

Protective resistors The bus interface consists of
two wire, and all slaves connected to the same bus can
operate only by the power that the master provides.
To avoid danger with short circuit, a resistor should
be placed in front of each slave. The bus can reach
voltages up to 42V, and we want to limit the current
in terms of a short circuit down to 100mA. To do so
we need a resistor with size 420Ω equation [9]. Since
the bus are polarity independent and for protecting the
slave, we split the resistor into two equal resistor in size
220Ω, one on each wire as shown in figure 47.

Sampling capacitor When a Master tries to com-
municate with a slave the slave needs a sampling ca-
pacitor Csc, that holds the voltage long enough for
the receiver to convert the bits and present it to the
µC, see figure 48. There must be sufficient time to recharge the capacitor between the bits arriving.
The TSS721A supports baud up to 9600 bps [46], the time spent holding each bit HIGH or LOW is
tps = 104µs due to the equation 17. This means the capacitor must be able to charge and discharge
within less than 104µs, let’s say half to be sure = 52µs. When receiving a HIGH signal Vsc is charged
to a voltage of 24V when Vvb has reached 36V. When receives a low signal, the bus voltage Vvb fall to
24V, and the capacitor Csc starts to discharge when the bus voltage is less or equal the capacitor voltage
Vsc = Vvb.

Figure 48: Sampling capacitor
Csc M-BUS [8]

Csc = Vvb is separated with a Zener diode shown in figure 48, with a
voltage of 12V, and capacitor Csc is charged through this and charged
with a rate between 15-30µA, with 36V max from supply and 25 max
over the capacitor. Which gives an average resistance about 600kΩ.
Calculation for the capacitor size see equation 15.
The size of capacitor Csc = 178pF from equation: 15. Its solved with
two capacitors we have available in the lab of size 330pF, which results
in a 165pF capacitor.

Storage capacitor Cstc is a storage capacitor which supply the reg-
ulated 3.3V output from the TSS721A with power. Cstc is charged
with a constant current ISTCuse and is limited by a voltage ref1: 7V.
Resistor RRIDD set the charging current of the capacitor Cstc, with a
value of RRIDD = 30kΩ gives a charging current = 1mA equation 18,
provided by the data sheet [8].

There are only two components connected in series to the VDD a
resistor and a capacitor in parallel Rvdd = 100kΩ, Cvdd = 100nF .

Versjon (1.0) page 40 of 54

Group 8 Bachelor’s thesis

Figure 49: Programming resis-
tor Rris M-BUS [8].

Programming resistor When the slave is transmitting information
to the master, the bus voltages remain constant, but the slave uses
current to transmit the message. The current is unique for each slave
and must be programmed by an external programming resistor Rris.
This modulation current is recommended to be as large as possible
Rris = 100Ω which gives a 15mA current shown in figure 49, when
transmitting over longer distances. The length of the bus in this case
will be less than 1m, since this device is most likely to be placed in
the fuse box. Therefore the resistor is chosen to: Rris = 330Ω, which
result in a programming current equal to 5mA in terms of distance
and saving power.

Csc =
52µs

600kΩ · ln(25
36)

= 178pF (14)

Rzener = −36V − 24V

20µA
≈ 600kΩ (15)

Rprotect =
42V

100mA
= 420Ω (16)

tps =
1

Baudrate
=

1

9600
= 104µs (17)

RRIDD = 25
VRIDD

ISTC
= 25

VRIDD

ISTCuse + ICS1
(18)

Versjon (1.0) page 41 of 54

Group 8 Bachelor’s thesis

3.3.7 Slave software

For the implementation of the slave devices the nordic UART service template is used as the base of
the slave. There will be different slave devices for different purposes.

Figure 50: Slave types

Slave types

Boiler:

The boiler slave type ’C’ will sense the temperature in the boiler and set the priority value
based on the temperature. This data will be sent to the master and the master will respond
with a percent number which describes how much power the boiler can use. This code will
mainly be done by another group in the project. The priorities the boiler can choose from is
LOW(28), MEDIUM(15) and HIGH(8) sends when the priority changes.

Heat devices:

The heat device will sense temperature and regulate as a thermostat based on wanted tem-
perature sent from central. If the temperature is under 2℃lower then wanted temperature,
the slave will put the priority to MEDIUM(15), otherwise LOW(25) priority. Sends data
when peripherals is not given an address and when change in temperature. It receives a state
(0/100) from central which tells the peripheral if it is allowed to turn on. This is typically
used on all electrical ovens and underfloor-heating.

Temp sensor:

A slave device with temperature sensor, reports temperature to master.

LED and buttons slave

LED 1: Advertising

LED 2: Not in use

LED 3: State

LED 4: Relay on/off

All LEDs off: Peripheral disconnected and in power mode, needs a restart to reconnect.

Versjon (1.0) page 42 of 54

Group 8 Bachelor’s thesis

3.3.8 Slave code implementation

Figure 51: Main function

Versjon (1.0) page 43 of 54

Group 8 Bachelor’s thesis

Figure 52: Interrupt handlers

Versjon (1.0) page 44 of 54

Group 8 Bachelor’s thesis

Figure 53: Nus data handler

Versjon (1.0) page 45 of 54

Group 8 Bachelor’s thesis

3.3.9 Slave hardware

Figure 54: Relay [29]

Relay The relay that will be used for this project is a
HRM2-S DC9V general purpose relay from Multicomp [29]
which we will use in normally-open(NO) configuration. It
is able to break 230VAC and 16A with a coil voltage about
Vcoil = 9V DC and a coil resistance equal to Rcoil = 115Ω,
which means the coil needs Icoil = 78mA to trigger the
switch inside, equation 19. It is much current of the cir-
cuit ran on battery but it will be powered from the 230VAC
and its then considered as insignificant. The relay will get
9V from a regulator, constructed for this purpose.

The relay will be turned on and off from a signal from the
nRF52, triggering a pin high or low. The signal is connected to a general purpose transistor in series
with the relay which function as a switch, the circuit shown in the schematic located in the appendix
7.6.3 [47]. The circuit is simple, consisting of a general purpose transistor BC548 [48] in series and
a flywheel diode in parallel with the relay coil. The transistor creates a switch controlled from the
nRF52, its easy to set up and makes it possible to control higher loads with a small voltage. When the
transistor breaks the connection from on to off, in a slight moment the relays coils inductance will try
to compensate the lac of current when the switch opens and may generate a voltage spike. That is why
the flywheel diode is in parallel, to even out these spikes which may damage the circuit.

Icoil =
Vcoil
Rcoil

=
9V

115Ω
≈ 78mA (19)

Temperature Slaves are provided with a temperature sensor of type LM75BD [49], which is a
temperature-to-digital-converter from NXP Semiconductors. The temperature sensor has a resolution
of 0.125◦C and an accuracy of ±2◦C. It can be supplied directly from the micro controller and uses
Inter-Integrated-Circuit(I2C) as communication interface.

There is a small circuit surrounding the LM75BD [49], consisting of pull up resistor for the TWI bus
and a 0Ω resistor in order to have a easy way to disconnect the component and a capacitor to filter the
irregularities on the power trace. The values of resistor R3, R5, R6 in the circuit 7.6.3 are recommended
in the data sheet and is just a percussion, but will not be mounted because the nRF52 got internal pull
up resistors. TWI buses SCL, SDA and OS is directly connected to the µC.

Figure 55: Temp sensor

The surface mounted temperature sensor is not optimally located, ideally it should be placed away from
the circuit board because of the copper layer of the PCB collect heat from the micro controller and the
circuit around, causing the temperature to raise. On this projects circuit board, a recess was placed
underneath the temperature sensor with the same size as the component to reduce this affect. A better
solution on previous work would be to place the temperature sensor externally to the circuit board, to
get the air temperature but will work great to shown the principle.

Versjon (1.0) page 46 of 54

Group 8 Bachelor’s thesis

3V3 regulator The slave receives 12V from the transformer, this voltage will be regulated down by
a known component LM317, which is a widely used three terminal adjustable regulator from Texas
Instrument [42].

Figure 56: LM317 structure [42]

nRF52 is a 3.3V µC and therefor the slave needs to convert
12V to 3V3, also The relay needs 9V to trigger the relay, 3v3
regulator is already created in the master design, and will be
duplicated it in this design to. The 3v3 regulator will also
be adjusted to a 9V regulator to use in the relay. The cir-
cuit have its origin from the data-sheet [42] and modified to
fit this project. The circuit is shown in the appendix under
master schematics 7.6.3. In order to get a stable 3V3 out-
put, the Voltage between OUT(Output) and ADJ(adjust)
pin will be held at 1.25V constant, see figure 56, resulting in
the desirable output will be 1.25V higher than Vadj equation
20.

This is solved by constructing a voltage divider between Out
and ADJ as shown by the resistors R1 and R2 in figure 57b
or schematic 7.6.3. The voltage across R1 will always be
1.25V so the rest of the voltage lies over R2, because of the
zener diode internally in LM317, see figure 56.

Vout = Vadj + 1.25V (20)

Vadj =
Vout

1.25V
=

3V 3

1.25
≈ 2.4V (21)

(a) LM317 9V voltage divider (b) LM317 3V3 voltage divider

Figure 57: Regulator pictures

Versjon (1.0) page 47 of 54

Group 8 Bachelor’s thesis

Capacitor C3 is placed in the start for filtering any irregularities the supply may produce. There is also
placed two capacitors C1 and C2 at the output, since capacitor C2 has a lower resonant frequency than
C1, these two capacitors filters a wider ranges of noise than if they were standing alone. As we can see
in figure 41 the (black) and (red) line together, forms the typical frequency output characteristics for
these two capacitors.

Figure 58: Capacitor filtering capabilities [43]

9V regulator The 9V regulator is based on the same circuit as 3v3 regulator, see schematic in the
appendix at 7.6.3. The difference is a slightly change in the feedback resistor R2 is changed to two
resistors in series (R20+R30) and increased from 620Ωto 2kΩincreasing the voltage output to 9V see
figure 57a.

Both 3v3 and 9v regulator have been tested, test rapport is located in the section 7.5.2.

Versjon (1.0) page 48 of 54

Group 8 Bachelor’s thesis

3.4 Validation & Testing

The original plan was to receive the instantaneous power from the AMS smart meter, but since the
firmware was not to be released before in late of May, it stopped the project. The solution was to
replace the AMS with a much simpler watt-meter with the same M-BUS-interface and which could
provide instantaneous power, in order for the project to go on. The plan was to create two PCBs formed
like an "Arduino Shield", which fit’s into the nRF52 as well. Every part of the design was simulated
and created individually on a breadboard or a PCB. After the construction each circuit got through a
comprehensive testing before merged into the master or slave design. The benefit by doing this is that
it makes it easy to duplicate these circuits that we know works from the testing in both master and
slave design, because both use some of the same circuits.

The master design consist of two M-BUS transceivers, one that communicate with the watt-meter with
M-BUS interface and one for the AMS, the AMS transceiver has not been tested, but constructed as
instructed from the data sheet[8]. The other transceiver got tested against the watt-meter with a nRF52
to transmit and receive the message, the test report is to be found in section 7.5.1. The design got a
buck boost converter and a 12V to 3V3 regulator as well. The Buck boost converter "boosts" 12V to
about 34V which are being used to power the M-BUS, test report in section 7.5.4. The 3V3 regulator
is for making the master dependent on the 230V to 12V transformer which will be available for the
master. The 3V3 regulator was made out off a familiar circuit made out off an LM317 and got through
tested, test report: 7.5.2. After all parts were put together the system were tested together to ensure
the functionality, against the watt meter and the nRF52 function together, the test report to be found
under section 7.5.5.

The slave design is also a single PCB which consist of a duplication of the 3V3 regulator and a 9V
regulator which is an adjusted version of the 3V3. The PCB contain a relay for controlling heat sources,
the relay is controlled by the µC through a transistor witch function as a switch, in series with the
relay coil. The regulator was tested before, and the transistor switch is a simple circuit which we knew
worked, and tested together with the whole system. The slave test report found under section 7.5.3.

For software testing there was made a set of test cases for both the slave and master device. The test
cases for slave can be seen in test report 7.5.7 and for the master in test report 7.5.6. A few mistakes
was found under testing and most of them corrected.

Master: The system is working good, however we get a com error at times, that is triggered by the
UART/M-BUS thread. It seems like this problem appears when the M-BUS circuit is not powered. But
there was not enough time to rectify this. The sending and receiving of UART data from nRF52 to the
M-BUS meter was tested with the logic analyzer as seen in test report: 7.5.1.

Slave: All the functions is working good, however the on-board temperature sensor is not optimal
because of the heat from the micro controller. For a functional system an external sensor would be
necessary. The sending over TWI works fine, but it can seem like the gpio driver strength could be set
a little higher or the frequency of the TWI a bit slower in order to get a faster logic high level.

Versjon (1.0) page 49 of 54

Group 8 Bachelor’s thesis

4 Discussion

This project has resulted in a working system which has been tested and well documented. The group
has put a lot of effort into the project, trying to create the best result possible and are proud of the
outcome. The project has evolved to be a flexible and highly expendable system, and have reached all
the requirements listed 3.1.

The original plan was to read the information that the AMS sends, but it was not ready yet and we
were forced to look for alternatives. We found a watt-meter with the same interface which would imitate
the AMS(M_1), one difference was that the AMS were powering all the meters connected which the
watt-meter did not. We created a master which could power the bus and and function as a transceiver.
The master successfully received the instantaneous power consumption from the watt-meter w/M-BUS-
interface, through the M-BUS transceiver. The master also have the possibility to communicate with
8 devices through BLE(S_1), organized by an algorithm which is of our creation(M_2). This al-
gorithm gives the slaves addresses and contain priorities between them, based on the information it
receives(M_3). The master then uses an protocol we created to receive temperatures and ensure the
control and communication between slaves(M_4)(S_2).

The protocol that has been developed between master and slave has room for expansion for further
development. There has been developed a simple user interface that uses the Nordic Semiconductor
toolbox app on a smart phone(S_3). But it would be beneficial if the application would be equipped
with a good user interface like a touchscreen which provides a setup that allow the user to set and read
temperatures in every room.

The group has developed a system that preforms very well, and is relatively close to a final product, but
if we was to do this project once again, we would create a more structured code with less code in the
main file and with more code partitioned into ".c" and ".h" files; We would look for some sort of safety
measures for protecting the system against intruders and we would replace the development board to a
much smaller module that does the same job and would fit this project better. The hardware for AMS
communication is placed on the master PCB, but has not been tested. A major extension would be
to upgrade the project to the newest soft device which supports 20 peripherals, and develop code that
supports more than 8 slaves and to handle the information that the AMS provides and add it into the
already existing algorithm.

This project has taught us to work in teams and that each person in the group contributes in different
manner. We have learned to split the responsibilities so every member get their own field of responsibility.
This project has taught us to have a better structure in both hardware and software, and made us familiar
with the tools surrounding PCB layout and Nordic semiconductors development board which we used
and has given us a good overview over protocols that used in this project.

Versjon (1.0) page 50 of 54

Group 8 Bachelor’s thesis

5 Conclusion

The problem was to create a device that should reduce power peaks of a household and make the
electricity consumption more constant, based on the instantaneous power consumption provided by
the AMS smart meter. The group came up with a working solution to the problem, but we got the
announcement that the firmware of the AMS was not to be released before the end of May, forced us to
look for a replacement, which we found and continued the project.

The system we created receives the instantaneous power consumption and through an algorithm calculate
which slaves that could be turned on and off based on the priorities and temperature sent from each
slave. After many hours of work the group have come up with a solution which after hours off testing
and debugging performed very well. The whole group was goal-oriented all through the end and the
calculated hours in the start of the project came very close to the real-time use.

The Smart Hub we have created solves the consumption problem by smoothing out the consumption
throughout the day. It has full control of the consumption by controlling the boiler and heat sources
around the system in terms of a more constant power consumption without compromising the comfort.
There are many automatic system on the market but in contrast to other system available on the market,
this system takes consumption into count which others does not.

Versjon (1.0) page 51 of 54

Group 8 Bachelor’s thesis

6 References

——————–

[1] Norges vassdrags- og energidirektorat. Smarte målere (AMS). 2016. url: http://publikasjoner.
nve.no/rapport/2016/rapport2016_79.pdf.

[2] Arne Venjum. “Informasjon til kundene via HAN-grensesnittet i AMS-måleren. OBISkoder.” In:
18.03 (2016). url: https://www.nve.no/Media/4307/201603186- 1- informasjon- til-
kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.
pdf.

[3] Torgeir Ericson and Bente Halvorsen. Hvordan varierer timeforbruket av strøm i ulike sektorer?
2008. url: https://www.ssb.no/a/publikasjoner/pdf/oa_200806/ericson.pdf.

[4] FreeRTOS. FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded systems
with Internet of Things extensions. 2017. url: http://www.freertos.org/.

[5] Nordic Semiconductor. Development tools and Software / nRF52832 / Bluetooth low energy /
Products / Home - Ultra Low Power Wireless Solutions from NORDIC SEMICONDUCTOR.
2016. url: https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832/
Development-tools-and-Software.

[6] Kamstrup. Kamstrup ams picture. url: http://frifagbevegelse.no/image- 11.204916.
0d8843d25c?size=1024x0.

[7] NÁVRAT Petr. Description of OBIS code for IEC 62056 standard protocol. url: https://www.
promotic.eu/en/pmdoc/Subsystems/Comm/PmDrivers/IEC62056_OBIS.htm.

[8] Texas Instruments. METER-BUS TRANSCEIVER. 1999. url: http://www.ti.com/lit/ds/
symlink/tss721a.pdf.

[9] Horst Ziegler. M-Bus Documentation. 1998. url: http://www.m-bus.com/mbusdoc/md4.php.

[10] Saia Burgess Controls. Energy meter Single phase 230 VAC M-Bus, Saia Burgess Controls, ALD1D5FM00A3A00
| Elfa Distrelec Norway. 2017. url: https://www.elfadistrelec.no/en/energy- meter-
single-phase-230-vac-bus-saia-burgess-controls-ald1d5fm00a3a00/p/30018167?q=
*&filter_Category3=Meters&filter_Category4=Energy+Meters%2C+Power+Monitoring+
Devices&filter_Buyable=1&filter_Output=M-Bus&page=5&origP.

[11] SAIA BURGESS CONTROLS. Single Energy meter with M-bus interface. 2013. url: https:
//www.elfadistrelec.no/Web/Downloads/_t/ds/SBC_EnergyMeter-ALD1-M-Bus_eng_tds.
pdf?mime=application%2Fpdf.

[12] Robert Keim. Back to Basics: The Universal Asynchronous Receiver/Transmitter (UART). 2016.
url: https://www.allaboutcircuits.com/technical- articles/back- to- basics- the-
universal-asynchronous-receiver-transmitter-uart/.

[13] Zigbee alliance. zigbee PRO with Green Power. url: http://www.zigbee.org/zigbee-for-
developers/network-specifications/zigbeepro/.

[14] Phil Smith. Comparing Low-Power Wireless Technologies | DigiKey. url: https://www.digikey.
com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies.

[15] Smarthome. What is Home Automation? url: http://www.smarthome.com/sc-what-is-home-
automation.

[16] Z-Wave. Z-Wave: The Basics. url: http://www.z-wave.com/faq.

[17] Steve Hegenderfer. Get ready for Bluetooth mesh! url: https://blog.bluetooth.com/trashed.

[18] Thread group. WHY WE MADE THREAD. url: https://www.threadgroup.org/About.

[19] EH Contributor. Home Automation Protocols: A Round-Up - Electronic House. 2016. url: https:
//www.electronichouse.com/smart-home/home-automation-protocols-what-technology-
is-right-for-you/.

[20] INSTEON. INSTEON Details Whitepaper: The Details. 2013. url: http://cache.insteon.com/
pdf/insteondetails.pdf.

Versjon (1.0) page 52 of 54

http://publikasjoner.nve.no/rapport/2016/rapport2016_79.pdf
http://publikasjoner.nve.no/rapport/2016/rapport2016_79.pdf
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf
https://www.nve.no/Media/4307/201603186-1-informasjon-til-kundene-via-han-grensesnittet-i-ams-m%C3%A5leren-obis-koder-1772408_1124902_0.pdf
https://www.ssb.no/a/publikasjoner/pdf/oa_200806/ericson.pdf
http://www.freertos.org/
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832/Development-tools-and-Software
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832/Development-tools-and-Software
http://frifagbevegelse.no/image-11.204916.0d8843d25c?size=1024x0
http://frifagbevegelse.no/image-11.204916.0d8843d25c?size=1024x0
https://www.promotic.eu/en/pmdoc/Subsystems/Comm/PmDrivers/IEC62056_OBIS.htm
https://www.promotic.eu/en/pmdoc/Subsystems/Comm/PmDrivers/IEC62056_OBIS.htm
http://www.ti.com/lit/ds/symlink/tss721a.pdf
http://www.ti.com/lit/ds/symlink/tss721a.pdf
http://www.m-bus.com/mbusdoc/md4.php
https://www.elfadistrelec.no/en/energy-meter-single-phase-230-vac-bus-saia-burgess-controls-ald1d5fm00a3a00/p/30018167?q=*&filter_Category3=Meters&filter_Category4=Energy+Meters%2C+Power+Monitoring+Devices&filter_Buyable=1&filter_Output=M-Bus&page=5&origP
https://www.elfadistrelec.no/en/energy-meter-single-phase-230-vac-bus-saia-burgess-controls-ald1d5fm00a3a00/p/30018167?q=*&filter_Category3=Meters&filter_Category4=Energy+Meters%2C+Power+Monitoring+Devices&filter_Buyable=1&filter_Output=M-Bus&page=5&origP
https://www.elfadistrelec.no/en/energy-meter-single-phase-230-vac-bus-saia-burgess-controls-ald1d5fm00a3a00/p/30018167?q=*&filter_Category3=Meters&filter_Category4=Energy+Meters%2C+Power+Monitoring+Devices&filter_Buyable=1&filter_Output=M-Bus&page=5&origP
https://www.elfadistrelec.no/en/energy-meter-single-phase-230-vac-bus-saia-burgess-controls-ald1d5fm00a3a00/p/30018167?q=*&filter_Category3=Meters&filter_Category4=Energy+Meters%2C+Power+Monitoring+Devices&filter_Buyable=1&filter_Output=M-Bus&page=5&origP
https://www.elfadistrelec.no/Web/Downloads/_t/ds/SBC_EnergyMeter-ALD1-M-Bus_eng_tds.pdf?mime=application%2Fpdf
https://www.elfadistrelec.no/Web/Downloads/_t/ds/SBC_EnergyMeter-ALD1-M-Bus_eng_tds.pdf?mime=application%2Fpdf
https://www.elfadistrelec.no/Web/Downloads/_t/ds/SBC_EnergyMeter-ALD1-M-Bus_eng_tds.pdf?mime=application%2Fpdf
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeepro/
http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeepro/
https://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
https://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
http://www.smarthome.com/sc-what-is-home-automation
http://www.smarthome.com/sc-what-is-home-automation
http://www.z-wave.com/faq
https://blog.bluetooth.com/trashed
https://www.threadgroup.org/About
https://www.electronichouse.com/smart-home/home-automation-protocols-what-technology-is-right-for-you/
https://www.electronichouse.com/smart-home/home-automation-protocols-what-technology-is-right-for-you/
https://www.electronichouse.com/smart-home/home-automation-protocols-what-technology-is-right-for-you/
http://cache.insteon.com/pdf/insteondetails.pdf
http://cache.insteon.com/pdf/insteondetails.pdf

Group 8 Bachelor’s thesis

[21] Nordic Semiconductors. nRF52832 / Bluetooth low energy / Products / Home - Ultra Low Power
Wireless Solutions from NORDIC SEMICONDUCTOR. url: https://www.nordicsemi.com/
eng/Products/Bluetooth-low-energy/nRF52832.

[22] Computer Hope. What is event-driven programming? 2017. url: http://www.computerhope.
com/jargon/e/event-driven-prog.htm.

[23] Nordic Semiconductor. Infocenter Example -Nordic Semiconductor. url: http://infocenter.
nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fexamples.
html&cp=4_0_0_4.

[24] Robin Mitchell. Finite State Machines & Microcontrollers. 2016. url: https://www.allaboutcircuits.
com/technical-articles/finite-state-machines-microcontrollers/.

[25] FreeRTOS. RTOS kernel rapidly switches between tasks. 2017. url: http://www.freertos.org/
implementation/a00004.html.

[26] FreeRTOS. Why RTOS and What is RTOS? 2017. url: http://www.freertos.org/about-
RTOS.html.

[27] FreeRTOS. FreeRTOS task states and state transitions described. 2017. url: http : / / www .
freertos.org/RTOS-task-states.html.

[28] “Mastering the FreeRTOS ™ Real Time Kernel”. In: (). url: http : / / www . freertos . org /
Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_
Guide.pdf.

[29] Multicomp. “Multicomp power relay”. In: (). url: http://www.farnell.com/datasheets/
1318173.pdf.

[30] Norcid Semiconductor. nRF52 Series SoC / Products / Home - Ultra Low Power Wireless So-
lutions from NORDIC SEMICONDUCTOR. url: https://www.nordicsemi.com/Products/
nRF52-Series-SoC.

[31] Nordic Semiconductor SDK. Bachelor - Bachelor. 2016. url: http://infocenter.nordicsemi.
com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Findex.html.

[32] samarkh. Altium UNO shield template. 2012. url: https://forum.arduino.cc/index.php?
topic=115446.0.

[33] Saleae. Saleae Logic Pro 8. The logic analyzer you’ll love to use. url: https://www.saleae.com/.

[34] SEGGER - The Embedded Experts - J-Link Debug Probes - Real Time Transfer - RTT Viewer.
2017. url: https://www.segger.com/jlink-rtt-viewer.html.

[35] Nordic Semiconductor. Nordic UART Service Client. 2016. url: http://infocenter.nordicsemi.
com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_c.
html&cp=4_0_1_4_2_0_2.

[36] Nordic Semiconductor. BLE Multi-link Example. 2016. url: http://infocenter.nordicsemi.
com / index . jsp ? topic = %2Fcom . nordic . infocenter . sdk5 . v12 . 2 . 0 % 2Fble _ sdk _ app _
multilink.html&cp=4_0_1_4_2_0_1.

[37] Nordic Semiconductors. Experimental: BLE Relay Example. 2016. url: http://infocenter.
nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_
app_rscs_relay.html&cp=4_0_1_4_2_1_1.

[38] Nordic Semiconductors. UART/Serial Port Emulation over BLE. 2016. url: http://infocenter.
nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_
app_nus_eval.html&cp=4_0_1_4_2_2_18.

[39] Nordic Semiconductor. TWI Sensor Example. 2016. url: https://infocenter.nordicsemi.com/
index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v10.0.0%2Ftwi_sensor_example.html.

[40] Nordics Semiconductors. nRF Toolbox for BLE – Android-apper på Google Play. 2017. url: https:
//play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox.

[41] ROHS.Wall adapter 230VAC to 12 VDC. url: https://sc02.alicdn.com/kf/HTB1UB2XMVXXXXcWapXXq6xXFXXXZ/
Us-au-eu-uk-12v-wall-mounted.jpg.

[42] Slvs044x –. “LM317 3-Terminal Adjustable Regulator”. In: (1997). url: http://www.ti.com/
lit/ds/symlink/lm317.pdf.

Versjon (1.0) page 53 of 54

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
http://www.computerhope.com/jargon/e/event-driven-prog.htm
http://www.computerhope.com/jargon/e/event-driven-prog.htm
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fexamples.html&cp=4_0_0_4
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fexamples.html&cp=4_0_0_4
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.0.0%2Fexamples.html&cp=4_0_0_4
https://www.allaboutcircuits.com/technical-articles/finite-state-machines-microcontrollers/
https://www.allaboutcircuits.com/technical-articles/finite-state-machines-microcontrollers/
http://www.freertos.org/implementation/a00004.html
http://www.freertos.org/implementation/a00004.html
http://www.freertos.org/about-RTOS.html
http://www.freertos.org/about-RTOS.html
http://www.freertos.org/RTOS-task-states.html
http://www.freertos.org/RTOS-task-states.html
http://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://www.farnell.com/datasheets/1318173.pdf
http://www.farnell.com/datasheets/1318173.pdf
https://www.nordicsemi.com/Products/nRF52-Series-SoC
https://www.nordicsemi.com/Products/nRF52-Series-SoC
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Findex.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Findex.html
https://forum.arduino.cc/index.php?topic=115446.0
https://forum.arduino.cc/index.php?topic=115446.0
https://www.saleae.com/
https://www.segger.com/jlink-rtt-viewer.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_c.html&cp=4_0_1_4_2_0_2
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_c.html&cp=4_0_1_4_2_0_2
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_c.html&cp=4_0_1_4_2_0_2
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_multilink.html&cp=4_0_1_4_2_0_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_multilink.html&cp=4_0_1_4_2_0_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_multilink.html&cp=4_0_1_4_2_0_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_rscs_relay.html&cp=4_0_1_4_2_1_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_rscs_relay.html&cp=4_0_1_4_2_1_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_rscs_relay.html&cp=4_0_1_4_2_1_1
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_eval.html&cp=4_0_1_4_2_2_18
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_eval.html&cp=4_0_1_4_2_2_18
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v12.2.0%2Fble_sdk_app_nus_eval.html&cp=4_0_1_4_2_2_18
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v10.0.0%2Ftwi_sensor_example.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v10.0.0%2Ftwi_sensor_example.html
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox
https://sc02.alicdn.com/kf/HTB1UB2XMVXXXXcWapXXq6xXFXXXZ/Us-au-eu-uk-12v-wall-mounted.jpg
https://sc02.alicdn.com/kf/HTB1UB2XMVXXXXcWapXXq6xXFXXXZ/Us-au-eu-uk-12v-wall-mounted.jpg
http://www.ti.com/lit/ds/symlink/lm317.pdf
http://www.ti.com/lit/ds/symlink/lm317.pdf

Group 8 Bachelor’s thesis

[43] ANDY aka.Where did the value of 0.1uF for bypass capacitors come from? - Electrical Engineering
Stack Exchange. 2015. url: https://electronics.stackexchange.com/questions/172447/
where-did-the-value-of-0-1uf-for-bypass-capacitors-come-from.

[44] RSCADA. M-Bus tranceiver github. url: https://github.com/rscada/libmbus.

[45] Linear technology. LT1072 - 1.25A High Efficiency Switching Regulator - Linear Technology. url:
http://www.linear.com/product/LT1072.

[46] Sparkfun. Serial Communication - learn.sparkfun.com. url: https://learn.sparkfun.com/
tutorials/serial-communication/rules-of-serial.

[47] Electronics Tutorials. Relay Switch Circuit and Relay Switching Circuit. url: http : / / www .
electronics-tutorials.ws/blog/relay-switch-circuit.html.

[48] Fairchild Semiconductors. “BC548”. In: (). url: http://pdf.datasheetcatalog.com/datasheet/
fairchild/BC548.pdf.

[49] NXP Semiconductors. “LM75B Digital temperature sensor and thermal watchdog”. In: Rev. 6.1 6
February (2015). url: http://www.nxp.com/documents/data_sheet/LM75B.pdf.

Versjon (1.0) page 54 of 54

https://electronics.stackexchange.com/questions/172447/where-did-the-value-of-0-1uf-for-bypass-capacitors-come-from
https://electronics.stackexchange.com/questions/172447/where-did-the-value-of-0-1uf-for-bypass-capacitors-come-from
https://github.com/rscada/libmbus
http://www.linear.com/product/LT1072
https://learn.sparkfun.com/tutorials/serial-communication/rules-of-serial
https://learn.sparkfun.com/tutorials/serial-communication/rules-of-serial
http://www.electronics-tutorials.ws/blog/relay-switch-circuit.html
http://www.electronics-tutorials.ws/blog/relay-switch-circuit.html
http://pdf.datasheetcatalog.com/datasheet/fairchild/BC548.pdf
http://pdf.datasheetcatalog.com/datasheet/fairchild/BC548.pdf
http://www.nxp.com/documents/data_sheet/LM75B.pdf

Group 8 Bachelor’s thesis

7 Appendices

7.1 Appendix A - Abbreviations & Glossary

Dictionary
Abbreviation Meaning
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
AC Alternating Current
ACK/ack Acknowledge
AMS Advanced Measuring system
ARM Semiconductor and software design company
BLE Bluetooth Low Energy
bps/BD bits per second/BAUD RATE
CPU Central Processing Unit
DC Direct Current
FSM Finite state machine
HAN Home Automation Network
I2C Inter Integrated Circuit
ID Identification
IDR Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
KNX Name on a smart house solution
LED Light Emitting Diode
LSB Least Significant Bit
M-BUS Meter Bus protocol
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
NC Normally closed
NO Normally open
NOK Norwegian Kroner
nRF52 Nordic semiconductors SoC microcontroller
NVE Norwegian Water Resource and Energy Directorate
OBIS Object Identification System
PCB Printed Circuit Board
RAM Random Access Memory
RMS Root Mean Square
RTOS Real Time Operating System
RX Receive
SDK Software Development Kit
TTL Transistor-transistor logic
TWI Two Wire interface
TX Transmit
UDP User Diagram Protocol
UiA University of Agder
UART Universal Asynchronous Receiver/Transmitter
UPD Universal powerline bus
WIFI Wireless Local Area Networking
w/ temp With Temperature
w/o temp Without Temperature
µC Micro-Controller

Versjon (1.0)

Group 8 Bachelor’s thesis

7.2 List of Figures

List of Figures
1 Usage example . 2
2 Work plan . 3
3 Kamstrup AMS smart meter [6] . 5
4 Energy meter with M-BUS interface [10] . 6
5 SND_NKE telegram structure in detail [10] . 6
6 Request from energy meter (RSP_UD) [10] . 7
7 More detailed figure of the request from energy meter (RSP_UD) [10] 7
8 Information about where the values are stored) [10] . 8
9 Block diagram M-BUS [9] . 8
10 Transmission of a character in calling direction [9] . 9
11 Telegram frames [9] . 9
12 C-Field [9] . 10
13 Control codes of the M-Bus protocol [9] . 10
14 Block diagram of UART [12] . 11
15 Sending of a byte [12] . 11
16 Example of an event driven software . 14
17 Example of an Finite State Machine software . 14
18 Multitasking [25] . 15
19 How multitasking works [25] . 15
20 Task states in FreeRTOS [27] . 15
21 Visuel heap memory allocation [28] . 16
22 Relay [29] . 17
23 System overview . 18
24 PCB tools . 19
25 Master block diagram . 20
26 Mind map of how the master software could work . 22
27 Slave block diagram . 23
28 Design specification for the slave device . 24
29 Datagram . 25
30 Flowcontrol master/ slave . 26
31 Flowcontrol phone/ master . 27
32 Slave types . 28
33 Priority distribution . 28
34 Consumption throughout the day in Norway [3] . 29
35 Memory error . 30
36 Block schematic software . 31
37 Process: ble_stack_thread . 34
38 230VAC to 12VDC Wall adapter [41] . 35
39 LM317 structure [42] . 35
40 Regulator pictures . 35
41 Capacitor filtering capabilities [43] . 36
42 Wattmeter w/M-BUS interface [10] . 36
44 The origin of the buck boost converter . 38
45 Buck boost simulation circuit . 39
46 Simulation results buck boost . 39
47 Protective resistors M-BUS [8]. 40
48 Sampling capacitor Csc M-BUS [8] . 40
49 Programming resistor Rris M-BUS [8]. 41
50 Slave types . 42
51 Main function . 43
52 Interrupt handlers . 44
53 Nus data handler . 45
54 Relay [29] . 46

Versjon (1.0)

Group 8 Bachelor’s thesis

55 Temp sensor . 46
56 LM317 structure [42] . 47
57 Regulator pictures . 47
58 Capacitor filtering capabilities [43] . 48
59 Gant diagram . 25
60 Simple M-BUS tranceiver simultaion . 46
61 Measurement M-BUS tranceiver . 46
62 Measurement M-BUS tranceiver 2 . 47
63 Echo seen on the logic analyzer . 47
64 Length of the echo seen on the logic analyzer . 47
65 Sending init on correct address, and get response as seen on the logic analyzer 48
66 Sending init on all addresses, and then sending request as seen on the logic analyzer . . 48
67 Sending init to a wrong address and no response as seen on the logic analyzer 49
68 Measurement regulator 3V3 . 51
69 Measurement regulator 3V3 2 . 51
70 Measurement regulator . 52
71 Measurement regulator 2 . 52
72 Buck boost simulation circuit . 56
73 Measurement buck boost 1 . 56
74 Measurement buck boost 2 . 57
75 Measurement buck boost 3 . 57
76 Simple M-BUS transceiver measuring points . 59
77 Checklist for software functionality on master . 62
78 Checklist for functionality on slave . 63
79 Sending request and receiving temperature as seen on the logic analyzer 64

Versjon (1.0)

3 Bacheloroppgaver Elektronikk
Smart Strøm

 Sol Celle

Inverter

Varmtvann

Varmeovn

Annen energi

forbruker

AMS

toveismåler

Smart effekt styrer: (Smartsikring)

1. Vet hvor mye effekt som er tilgjengelig

2. Vet hvor mye effekt energi forbrukerne

ønsker

3. Vet hvilken prioritet effekt forbrukerne har.

4. Kan bestemme hvilene energi forbrukere

som får forbruke effekt. (og hvor mye)

Smart effekt kontroller:

1. Kan styre effekten som forbruker får. Av/PÅ

eller trinnløst.

2. Vet hvor mye effekt som energi forbrukeren

ønsker. Sender denne informasjonen til

Smart effekt styrer.

3. Vet hvilken prioritet energi forbrukeren har,

sender denne informasjonen til Smart effekt

styrer.

4. Vet om energi forbrukeren kan ha trinnløs

effekt styring og sender denne

informasjonen til, Smart effekt styrer.

Group 8 Bachelor’s thesis

7.3 Appendix B - Meeting/Gantt diagram/Timesheets

7.3.1 Given Task

Versjon (1.0)

Group 8 Bachelor’s thesis

7.3.2 Guidance meetings

1st Guidance meeting
Date: 27.January 201
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Group 5: Adrian Langemyr, Henriette T. W. Grønlund, Wesley Ryan E. B. Paintsil.
Supervisor: Geir Jevne.

Report:
We discussed what protocol to use to communicate with our nodes. Geir suggested Obis. We need
priorities and sub priorities, a program that is easy to expand.

2nd Guidance meeting
Date: 13.February 2017
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Supervisor: Geir Jevne.

Report:

• The flow chart was complex and it is difficult to see how things are connected, especially Register
Device (block that does not have arrow into it). Geir proposes a solution that has multiple
scenarios, one based on ammeter and based on the M-BUS. It makes the chart easier.

• He proposes to turn together ADC processes a block, maybe enough with ammeter block instead
of ADC.

• Look for standards and protocols that exist in the market, and may possibly come with improve-
ments, to name a few protocols and compare.

• Writing about Ammeter solution (downside) and compare the use of 2 or 3 current transformers
by measuring three phase.

• Writing about the use of setback, the regulation of housing.

• Reading up on fuses and reaction, to see how often we need to read the ammeter to regulate effect.

Versjon (1.0)

Group 8 Bachelor’s thesis

3nd Guidance meeting
Date: 15.Mars 2017
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Supervisor: Geir Jevne, Ken Henry Andersen.

Report:

• We need to specify the section about MOSFETS better.

• We need to put colors into the flow-diagram and specify it.

• We need to look into timer1 to see if it is reserved.

• Change name on slave device-manager

• Event loop should be written about as a code implementation.

• Write about what people have done/ main responsibility.

• We need to find out if our M-BUS slave got the power supply integrated.

4th Guidance meeting
Date: 19.April 2017
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Supervisor: Geir Jevne, Ken Henry Andersen.

Report:

• Jan Roar asked the supervisors if the flow diagram over the software is OK.

• Jan Roar should avoid shortcuts in the code to make it easier to read and debug.

• Supervisors likes the hardware block diagram over the slave, but need a block for temperature
sensor.

• A small presentation about the algorithm is given to the supervisors. Priority and functionality.

• Give a good reason reason why we should wait 15 min or more before starting to turn on devices
(algorithm).

• We don’t use much time on the AMS part, just describe what is done and that we did get it in
time.

• The watt-meter(Plan B) needs to be described in the theory part.

• The supervisors want the first revision of the report, when its finish to look though it.

• Jan Roar ask if there was some way to run the same code i different threads. There should be a
solution.

Versjon (1.0)

Group 8 Bachelor’s thesis

5th Guidance meeting
Date: 03.May 2017
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Supervisor: Geir Jevne, Ken Henry Andersen.

Report:

• Version control, maximum 1 page.

• Preface is OK.

• Use BLE instead of ble, use uppercase letters for shortcuts UPB,BLE and so on.

• First time, write the whole name, and use the shortcut after this.

• We use the name protocol to many places, can we merge this?.

• Remove TWI and write under nRF52 which part we use off the nRF52.

• Change event driven "sits and wait" to "waits".

• Requirements overview, need to separate for wired and wireless com.

• The requirements needs to be numerated.

• Powering of the M-BUS transceiver and BLE needs to be in the BOCK DIAGRAM.

• Software overview: We must remove the ASK part.

• Color on Block diagram, and differ which is signals or power.

• A better solution on the request of temperature in the slave software.

• Differ what happens in main what happens in interrupt contex.

• Change the Bluetooth protocol to "Master to slave protocol".

• ICP protocol, could have been used¿

• Indicate that the process in flow control repeat itself (loop).

• Priority algorithm, check 27 or 28 priority.

• Specify the 15 minutes in switch on device better.

• Update flow diagram and describe it better.

• Use thread or TASK, not both.

• Simple M-BUS transceiver calculation needs pictures

• The M-BUS transceiver, remove first part about feasibility report.

• Merge the BLE functions flow diagram slave device.

Versjon (1.0)

Group 8 Bachelor’s thesis

6th Guidance meeting
Date: 11.May 2017
Who was at the meeting:
Group 8: Sondre, Jan Roar and Eivind.
Supervisor: Geir Jevne, Ken Henry Andersen.

Report:

• Report outline should be created

• Main goal

• 7,5 hour in work plan and decimals, per week. move coloms,

• 2.2 look for grammar

• 2.3 look at the grammar

• 2.3 describe master and slave, Master provide slaved to the rest

• Baud rate,

• Master slave protocol????? 2.5 confusing

• Finite state machine rewrite "back to the beginning"

• Remove 2.8.5

• functional requirements at least one slave??

• 3.2.1 energy effective standard, is not a requirement??

• Master and slave green (on the pcb) describe it better PCB/micro-controller osv.

• bobble overview of the software in the design specification. rename the figure caption "tankekart
over software".

• Design specification for the salve device

• real time clock page 26??? remove real time clock! or describe the RTOS clock better,

• Wanted temperature, describe slave 1 and slave 2.

• FB figure and volt divider can be removed in buck boost

• add a comment to read done.

• slave code implementation? to much space

• Testing and validating, a little more about each testing

• mention AMS in the start of the discussion

• to hard to read thee discussion.

• Need to mention in the conclusion.

• change M-BUS to M-BUS

• Sort the abbreviation alphabetically

• figure in the press release

• name the appendix

• refer to the software diagram in the appendix

Versjon (1.0)

Group 8 Bachelor’s thesis

7.3.3 Group meetings

1st Meeting
Date: 10.January 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

Generally We have decided how the project should look like and how we should approach the problem,
has also distributed tasks for the next time.

Tasks until next time

Jan Roar:

• doing research on protocol for communication between master and slave.

Sondre:

• Finish report template

Eivind:

• Fesability report- introduction

New meeting Thuesday 10.11.16

Versjon (1.0)

Group 8 Bachelor’s thesis

2nd Meeting
Date: 17.january 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Jan Roar:—

Sondre: Finished report template for feasibility study, Bachelor report, and wrote a part of the project
description.

Eivind: Worked with project description

Tasks until next time

Sondre and Eivind will meet the supervisor tomorrow and get the project approved.

Jan Roar: research
Sondre: research M-bus

Eivind:

• research

Next meeting Monday 30.01.17

Versjon (1.0)

Group 8 Bachelor’s thesis

3rd Meeting
Date: 30.January 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

Generally:
Pilot project report was put on standby until the meeting with renewable. The focus was directed to
another project we have, which deals partly the same and which indirectly can be used in feasibility
report.

Tasks until next time

Jan Roar:

• Working with BLE and FreeRTOS.

• Can we use some example code?

• Writing about FreeRTOS

• NUS (Nordic Uart Service)

Sondre:

• Examining the components we need for the project and what solutions we are going for.

• Starting to draw M-bus receiver in Altium Designer.

• Writing about M-bus receiver and smart power meters in the feasibility report.

Eivind:

• Programming: Working with BT and free RTOS, try to communicate with master and slave. Try
to find example code

New meeting Thuesday 09.02.17

Versjon (1.0)

Group 8 Bachelor’s thesis

4th Meeting
Date: 9.February 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:
Sondre: Sondre: Completed issue and the theoretical background on M-bus, Ordered part for the
project and started working on M-bus design in Altium Designer.

Jan Roar: Completed reading: "Mastering the FreeRTOS Real Time Kernal A Hands On Tutorial
Guide". Fixed problems with compiling large c project. Started compiling inn GCC (Commando line).

Eivind: Been working on BT protocol, configured GCC compiler and worked with SDL diagrams.

Tasks until next time:
We must find out how much time we need for the tasks in the project, until Monday.

Jan Roar:

• Create SDL(Flow) diagram Friday/Monday

• Write more about state machine vs RTOS on the feasibility report, and make a conclusion about
RTOS(FreeRTOS)

Sondre:

• Create a template solution for Gantt diagram.

• Create SDL(Flow) diagram Monday.

• Continue working on M-bus Receiver.

Eivind:

• Create SDL(Flow) diagram Monday

• Read about OBIS Code

New meeting Wednesday 15.02.17

Versjon (1.0)

Group 8 Bachelor’s thesis

5th Meeting
Date: 15.February 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:
Sondre: Did finish template for the Gantt diagram, and helped with the flow diagram, also did some
work on the M-BUS receiver but not finished because we prioritized to finish the feasibility study.

Jan Roar: Almost finished the flowdiagram of the master unit(need some modification). Started
writing about state machine and RTOS, not finished yet.

Eivind:Wrote about protocols and fixed a better system for time sheet.

Tasks until next time:

Jan Roar:

• Rewrite SDL/flowdiagram after the meeting

• SDL/flowdiagram of the slave.

• Describe both of the flowdiagram(master and slave)

• Continue writing about fsm and rtos(freertos)

Sondre:

• Finish writing about ammeters in the master unit.

• Finish the Gantt diagram.

• Write about the extensions.

• Look for other alternatives than OBIS codes.

Eivind:

• Finish work with protocol, obis code and make a better timesheet

New meeting Wednesday 22.02.17

Versjon (1.0)

Group 8 Bachelor’s thesis

6th Meeting
Date: 22.February 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:
Main focus last week, was to complete the feasibility study. The report got completed and delivered on
Monday.

Sondre: Made a Gantt diagram but, it got complex and unorganized, so i made a new one in Excel, I
wrote about extensions and did some research about obis-codes, also did some work on the Transceiver.

Jan Roar: Finished the flowdiagram of central and slave device, and made a short description of these.
Also finished the description of fsm and rtos.

Eivind: I finished writing about the protocol, obis cosem codes and made a better time-sheet. We was
finished with the feasibility report on Sunday. So I worked with the SDK BLE protocol this week.

Tasks until next time‘:

Jan Roar:

• Making a provisional uart for implementing uart on the central. With the help of an Arduino
Leonardo

• Setting up the uart init on nrf52

• Obis code from my uncle

Sondre:

• Complete the design of the M-BUS transceiver.

• Make a logic level converter 5V-3.3V, to the UART(just for testing UART).

• Finish writing about M-BUS transceiver in implementation and design, main report.

• Look for a M-BUS sender, for professionalize the AMS.

Eivind:

• Study ble SDK for nrf52

• make a connection with uart between central and a perepheral

• Send NUS data between devices

New meeting Monday 06.03.17

Versjon (1.0)

Group 8 Bachelor’s thesis

7th Meeting
Date: 06.March 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: I finished the design and soldering of the M-BUS transceiver, and its ready for testing and
debugging. together with our supervisor we found a replacement for the AMS smart meter, since we
will not have the opportunity to work on the AMS device. i did not finish writing about the M-BUS
transceiver in the report, because of work on the slave device.

Jan Roar: Didn‘t finish the uart implementing, but started little bit of it. Made a starting project
of the central device with FreeRTOS (implemented 2 examples from nordic into one). Made a demo of
uart with a Arduino Leonardo.

Eivind: Worked with the connection between slave and peripheral. Until now I have only managed to
connect and send nus data to one slave. I have also startet to set up GITHUB to make it easier for to
or more people work on same code.

Tasks until next time:

Jan Roar:

• Setting up the uart init on nrf52, making a new task

• Make a algoritm of some sort on how to send and receive uart, according to the Energy meter
Single phase 230 VAC M-Bus, ALD1D5FM00A3A00, Saia Burgess Controls

• Continue with ble and freertos

Sondre:

• Create a slave with temperature sensor.

• See if we need to use ammeter?

• Finish writing about M-bus transceiver.

Eivind:

• GITHUB setup

• Work on protocol between slave and master

• Set up a temp sensor on slave

New meeting Monday 17.03.17

Versjon (1.0)

Group 8 Bachelor’s thesis

8th Meeting
Date: 17.March 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: Created a slave, finished the temperature design but we decided to do some changes to the
slave, and create a relay that can be controlled. Since we don’t get the AMS, we ordered a watt-meter
with M-BUS interface which shows the same principle. We don’t need the ammeters anymore. This
new watt-meter don’t work as expected and we need to power the M-BUS externally. We have also
worked on another report, that have been prioritized the last 1.5 weeks. I did not got the chance to
finish M-BUS because of problems with the new watt-meter. Ordered some parts to the slave since last
time.

Jan Roar: Had problems with the initiliasing of the uart after i implemented the NRF_LOG module.
Figured out that the uart module had to be initialised before the logging function. After that i got
error in the softdevice, had to change memory addresse start and the size of the memory in a freertos
file. The after implementing som more task i got errors, then i had to change the heap size in a freertos
config file. After that everything with freertos and softdevice worked fine. Then i continued with the
uart implementation, and m_bus implementation. Made a new header and c file regarding the m_bus
watt meater. Made a dummy nrf52 that gives the central reply on the uart.

Eivind: I had some problems with the implementation of github but it is now working properly. I have
managed to connect the master with 3 slaves over ble. It should work with up to 8 slaves but I have
only tried 3. I am not finished with temp sensor on slave. But the code whould be finished by the week.

Tasks until next time:

Jan Roar:

• Continue with the UART implementation/ m_bus.

• Writing about this in the report.

Sondre:

• Find a solution to powering the M-BUS.

• Work on a solution for the slave when the parts arrives.

• If we find a solution for the M-BUS, we need to test the M-BUS receiver i made previous.

• Finish writing about M-bus transceiver.

Eivind:

• Finish temp sensor and slave device

• Report writing slave

New meeting Wednesday 22.03.17

Versjon (1.0)

Group 8 Bachelor’s thesis

9th Meeting
Date: 22.March 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: We found a solution for externally powering the M-BUS. We built a new and simpler transceiver
and we manage to connect it to the nRF52 and receive the measurement values.

Jan Roar: Had some issues with the m_bus dummy, figured out that i can test directly on the m_bus.
Making a plan on how to read the data from m_bus. Figured that out. Found out that i need to make
a flow chart over the uart implementation, before it gets to big. Got connection from m_bus meter
when sending request, but not initialization.

Eivind:Been sick and haven’t done anything.

Tasks until next time:

Jan Roar:

• continue with uart, making a flow chart.

• decoding the telegram structure from the m_bus receiver, and writing about this i in the main
report.

Sondre:

• Send the simple M-BUS transceiver to print.

• Start working a solution for relay 230V 16A on the slave device.

• Write about the simple M-BUS and powering

Eivind:

• Still sick, but I will try to do last weeks goal if I get recovered.

New meeting Monday 27.03.17

Versjon (1.0)

Group 8 Bachelor’s thesis

10th Meeting
Date: 27.March 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: I have been sick since Thursday, and haven’t done anything.

Jan Roar: Startet with a flow chart, found out that giving a mutex in an isr is not allowed. Had to
implement this another way. Made codes for sending initialisation, reset, changing primary address and
reset partial power on the m_bus. Discussed with Eivind the algoritm of the central device. We found
out that the slave has to be a thermostat, or else it wount work as planned.

Eivind:Wrote about the slave in report, slave is working with temp sensor, implemented ack in the
sensing.

Tasks until next time:

Jan Roar:

• Finishing the uart

• Figuring out initialisation of m_bus.

• Flow chart finish

• Writing in the report.

Sondre:

• Write about the simple M-BUS and powering.

• Start working a solution for relay 230V 16A on the slave device.

• Solder the simple M-BUS transceiver.

Eivind:

• Write about protocol in the report

• Start on master logarithm

New meeting Friday 12.04.17

Versjon (1.0)

Group 8 Bachelor’s thesis

11th Meeting
Date: 12.April 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: I have printed slave devices and soldered them, i tested the relay and regulators and it worked
well. I have also been working from home a few days and written on the report and worked on the
Master design. I have been tested the buck boost converter for powering the M-BUS before sending it
to print.

Eivind: I have written about the protocol in the report and made a master logarithm without FreeRtos.
The code is working but I have started to change the code to implement FreeRtos.

Jan Roar: Thought i was finished with the uart, but apparently i figured out new and bether way to
fix it. Figuring out how to "find" m_bus slaves. Making a task that sends request to the respective
slave devices (only one now). Sow have to make a new flow chart, or just fix the one i already had made.

Tasks until next time:

Jan Roar:

• Finish the UART code

• Finish the flow chart

• Start with some writing in the report

Sondre:

• Get a working buck boost converter and integrate it into master design.

• Complete/solder the master until next meeting ready for testing.

• Complete the slave, fix the powering fault.

• Complete test/lab reports.

Eivind:

• I will try to fix the code with freeRtos.

New meeting Wednesday 19.04.17

Versjon (1.0)

Group 8 Bachelor’s thesis

12th Meeting
Date: 19.April 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: I have been working on the Master, but i need to figure out the Buck boost converter before i
can complete the design, i have also worked on the report.

Eivind:The code is working with freeRTOS

Jan Roar: Finished the uart code (or so i hope), but it is not tested yet. Flow chart over uart is almost
close to finish, just some small details. Started writing in the theory part of the report.

Tasks until next time:

Jan Roar:

• Checking the slave code, and figured out the temp sensor.

• Testing the central device.

• Flowchart diagram of controller task

• Report: Writing about M-Bus central

• Report: Writing about Uart

• Report: Writing about Rtos and Freertos

Sondre:

• Test and complete the buck boost converter so the master design can be sent to print.

• Write about the buck boost converter on the theoretical part of the report.

• Change some details on the HW BLOCK DIAGRAMS

• Solder the Master design after its finish from print.

Eivind:

• Merge main code with updated version of UART

• Fix references with mendeley and IEEE standar

• Report: Controller

• Make it possible to adjust max power of slave and clock with app

New meeting Monday 24.04.17

Versjon (1.0)

Group 8 Bachelor’s thesis

13th Meeting
Date: 24.April 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: Soldered the master and its now ready for testing on Wednesday. I have been working on the
report, included the schematic and made a better outline. Written lab reports.

Eivind: Merged code with uart, fixed references, added functionality to phone -> master BLE protocol

Jan Roar: Not finish with all my task, because the meeting was sooner than planned. Finished the
uart flow chart. Started a overview flowchart, with all the "signal" that are sent from task to task.
Starting figuring out Eivinds code, since i shall make flowchart for that too.

Tasks until next time:

Jan Roar:

• Finish flowchart

• Writing about the flowchart in the report

• Writing in the theory part.

Sondre:

• Test and complete the Master design.

• Find box to the slave and mount a socket.

• Find another 12V adapter.

• Do a system test when everything is complete.

• Finish writing about Buck boost converter.

• Complete M-BUS in the report.

• Write function requirements.

Eivind:

• System test, add functionality to phone-> master protocol (feedback to phone commands),start
on preface if there is time

New meeting Wednesday 03.05.17

Versjon (1.0)

Group 8 Bachelor’s thesis

14th Meeting
Date: 03.May 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: Got to finish the hardware and we tested the system. I have been writing a lot on the report
and made some changes. Didn’t find a box for the slave, that will be handeled later on.

Eivind: Finished with SW testing, but not test report. Finished the phone master protocol code.
Wrote the preface and made flow charts to slave.

Jan Roar: Have not finished the flowchart completely, and therefore i did not started writing about
the flowchart in the report. Did started with the theory part, just missing a tiny bit there.

Tasks until next time:

Jan Roar:

• Flowchart must be finish

• Finish theory part

• Make a test report about Uart

• start writing in design specification and implementation part

Sondre:

• Include more figures into the implementation, especially the calculation part.

• Finish writing about the Buck boost converter.

• Finish writing about the calculation regulator circuit.

• Write the design specification.

Eivind:

• Write about the configuration of the master

• Finish test reports

• Finish Ble protocol implementation

New meeting Monday 08.05.17

Versjon (1.0)

Group 8 Bachelor’s thesis

15th Meeting
Date: 08.May 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:
Group:

Sondre: I finished all the calculations and writing (tasks), have been working a lot on the report.

Eivind: The configuration of the master, finished test reports, finished ble protocol implementation,
master and slave bubble diagram, master and slave, implementation.

Jan Roar: Missing just one function in the flowchart, but this will be finished today. Not finished
theory part. Missing writing something about design patterns. UART test report is finished, also made
a test on the TWI protocol on the slave.

Tasks until next time:

Jan Roar:

• Finish the last function in the flowchart, nus_data_handler

• Master implementations, write about the different threads.

• Master design specification, must write more here.

• Design Patterns, rewrite event driven and fsm. Write about RTOS and a combination of all three

• Go through validating and testing.

• Put the main.c, m_bus_receiver.c and .h in the report. And go through the comments.

• Fix the meeting report, summary and Validating & testing

Sondre:

• Include BOM into project.

• Project plan, hours and calculation.

• M-BUS read through after the removal of a step back.

• Finish writing on the Validation and testing.

• Fix the guidance meetings, and renewable meeting and meeting report writing.

• Clear faults in pictures, report.

• Write the discussion and Conclusion

• Validating and testing

• rewrite the theoretical part, switch mode power supply

Eivind:

• Problem statement and Problem solution

• Report outline

• Master implementations, write about the different threads

• convert the Man hour excel document to PDF

• Validating and testing

• Add lines between each row in the timesheets.

New meeting Thursday 11.05.17

Versjon (1.0)

Group 8 Bachelor’s thesis

16th Meeting
Date: 11.May 2017
Who was at the meeting: Sondre, Jan Roar and Eivind.

From last time:

Sondre: Created BOM, worked with project plan and fixed guidance meetings, wrote conclution and
discussion.

Eivind: Problem statement, problem solution, timesheet. ++

Jan Roar: Finished the flowchart, but seems like i have to fix something. Finished design patterns.

Tasks until next time:

Jan Roar:

• Fix the uart part.

• Change the booble diagram for master, mind-map not booble

• Fix slave implementation code part, read done. And fix subsection

• Reference in master implementation software part. Clock reference?

• Maybe fix the master flowdiagram

• Go thru and fix reference and typos.

Sondre:

• Fix the work plan

• Fix the Hardware block diagram, should specify that PCB(Green) is one PCB

• Remove unnecessary figures on the hardware

• Testing and validating, more information about the testing and refer, not in a list.

• Add info about the AMS at the beginning of the discussion, why did we choose watt meter

• Mention AMS in the conclusion

• Change MBUS to M-BUS

• extend the abbreviation and sort it alphabetically

• Fix the appendix names

• Read through the report and fix bad writing and grammar

• write about master and slaves possibility to power the M-BUS

Eivind:

• 2.3 describe master and slave, Master provide slaved to the rest

• functional requirements at least one slave?

• 3.2.1 energy effective standard, is not a requirement?

• Test rapport

• Fix discussion

• Fix pressemelding med bilde

• Heap memory

• Litherature review

Versjon (1.0)

Group 8 Bachelor’s thesis

7.3.4 Gantt diagram

Figure 59: Gant diagram

Versjon (1.0)

Name/ week Date Hours Description

Eivind Stendal 09.01.2017 5,00 Planning the project and start-up meeting

10.01.2017 7,50 Planning the project and start-up meeting

11.01.2017 5,00 Report- introduction

12.01.2017 5,00 Fesability report

13.01.2017 -

14.01.2017 -

15.01.2017 -

Sum week 2 22,50

16.01.2017 11,00 Project description and planning

17.01.2017 7,00 Meating with other group, project planning

18.01.2017 -

19.01.2017 -

20.01.2017 -

21.01.2017 -

22.01.2017 -

sum week 3 18,00

23.01.2017

24.01.2017

25.01.2017

26.01.2017

27.01.2017 5,00

Meeting with renewable, project overview, and

meeting other groop, protocol, geir. Intro keil

28.01.2017

29.01.2017

sum week 4 5,00

30.01.2017 10,00 GCC compiler problems

31.01.2017 8,00 BT protocol, GCC protocol

01.02.2017 10,00 Rtos and SDK nrf52 research

02.02.2017 10,00 Working with C code and SDL diagram for slave

03.02.2017

04.02.2017

05.02.2017

sum week 5 38,00

06.02.2017 7,00 Protocol and SLD diagrams

07.02.2017

08.02.2017

09.02.2017 3,00 Meeting and worked with SLD diagram

10.02.2017 6,00 Discussing algorith in master

11.02.2017

12.02.2017

sum week 6 16,00

Group 8 Bachelor’s thesis

7.3.5 Timesheet Eivind Stendal

Versjon (1.0)

13.02.2017 8,00 Flowdiagram of master and protocolresearch

14.02.2017 5,00 Writing about protocol

15.02.2017 9,00 Meeting, timesheet and protocol research

16.02.2017 5,00 Reseach on obis and protocols

17.02.2017 9,00 Research protocolls, and report finish

18.02.2017 11,00 Finishing report +6h SDK reseach

19.02.2017 -

Sum week 7 47,00

20.02.2017 11,00 Finishing report and Nordic SDK ble

21.02.2017 8,00 SDK research

22.02.2017 8,00 ble sdk

23.02.2017 2,00 ble_sdk

24.02.2017 8,00 ble_sdk

25.02.2017 -

26.02.2017 -

Sum week 8 37,00

27.02.2017 8,00 ble sdk

28.02.2017 10,00 ble sdk connection

01.03.2017 11,00 ble sdk connection, ppi

02.03.2017 6,00 Counter for slave w/ temp sensor

03.03.2017 3,00 Git/GITHUB

04.03.2017 -

05.03.2017 -

sum week 9 38,00

06.03.2017 4,00 Git/ github problems++

07.03.2017 8,00 ble, whitelist and peers

08.03.2017 5,00 ble, whitelist and peers

09.03.2017 5,00 ble, whitlist and peers

10.03.2017 -

11.03.2017 -

12.03.2017 -

sum week 10 22,00

13.03.2017 4,00 ble multipairing

14.03.2017 7,00

multipairing, giving up for now, central ->slave

comm

15.03.2017 10,00 ble multiparing and protocoll

16.03.2017 12,00 ble multiparing and protocoll

17.03.2017 6,00

Started on implementation of temp sensor in

slave code

18.03.2017 -

19.03.2017 - sick

sum week 11 39,00

Group 8 Bachelor’s thesis

Versjon (1.0)

20.03.2017 - sick

21.03.2017 - sick

22.03.2017 - sick

23.03.2017 9,00

finished temp sensor code, and tried to

implement "central as slave"

24.03.2017 5,00

implemented clock funtion in master, started to

look at priority logarithm

25.03.2017 7,00

ble protocoll and started to think about master

logarithm

26.03.2017 4,00 updated ble protocoll with ack

sum week 12 25,00

27.03.2017 10,00

Report -slave and protocoll. Master controller-

code

28.03.2017 -

29.03.2017 9,50 master protocol/ report

30.03.2017 8,00 Report/ master, ble protocol phone ->master

31.03.2017 7,00 app -master protocol is working

01.04.2017 -

02.04.2017 -

sum week 13 34,50

03.04.2017 12,00

Whitelist on central, some small adjustment on

slave code and report work

04.04.2017 -

05.04.2017 11,00

Merged the ble protocol code with controller and

uart code. Also worked on flowdiagrams

06.04.2017 -

07.04.2017 9,00 customize ble protocol for RTOS

08.04.2017 8,00 customize ble protocol for RTOS

09.04.2017 8,00 customize ble protocol for RTOS

sum week 14 48,00

10.04.2017 8,00 RTOS

11.04.2017 2,00 RTOS problems

12.04.2017 9,00 RTOS problems fixed, now working

13.04.2017 - Easter

14.04.2017 - Easter

15.04.2017 - Easter

16.04.2017 - Easter

sum week 15 19,00

Group 8 Bachelor’s thesis

Versjon (1.0)

17.04.2017 - Easter

18.04.2017 -

19.04.2017 9,00

Merged new UART code with controller, changed

referances to IEEE

20.04.2017 8,00 report, references and ble protocol

21.04.2017 5,00

Added funtionality to the nos phone -master

protocoll

22.04.2017 -

23.04.2017 -

sum week 16 22,00

24.04.2017 11,50 Report, about ble protocol, phone ->master prot

25.04.2017 7,00

Finished phone-> master protocol, started to work

on test checklist and cleaned up code.

26.04.2017 5,00 Testing software

27.04.2017 6,00 Testing software

28.04.2017 10,00 Testing software

29.04.2017 10,00 Testing software

30.04.2017 7,00 Testing software

sum week 17 56,50

01.05.2017 7,00 Preface, ble protocol

02.05.2017 7,00 Report ble, diagrams

03.05.2017 9,00

Report, meeting and fixing on the report based on

the feedback we got on meeting.

04.05.2017 8,00

Master and slave bubble diagram. Master and

slave implementration diagram

05.05.2017 7,00 Report

06.05.2017 -

07.05.2017 -

sum week 18 38,00

08.05.2017 11,00 Fixing on introduction

09.05.2017 10,50 Press release, introduction, fix timesheet.

10.05.2017 - Prepearing for exam proparbility

11.05.2017 6,00 Finish report

12.05.2017 10,00 Finish report

13.05.2017 10,00 Finish report

14.05.2017 10,00 Finish report

sum week 19 57,50

Group 8 Bachelor’s thesis

Versjon (1.0)

Name/week Date Hours Description

Sondre Håverstad 09.01.2017 5,00 Planning the project and start-up meeting

10.01.2017 7,50 Planning the project and start-up meeting

11.01.2017 5,00

Feasibility study report - issue, Altium Designer

study.

12.01.2017 6,00 Feasibility report and research M-Bus

13.01.2017 -

14.01.2017 -

15.01.2017 -

sum week 2 23,50

16.01.2017 6,00 Project description and planning

17.01.2017 7,00 Meating with other group, project planning

18.01.2017 -

19.01.2017 -

20.01.2017 -

21.01.2017 -

22.01.2017 -

sum week 3 13,00

23.01.2017 -

24.01.2017 -

25.01.2017 -

26.01.2017 -

27.01.2017 5,00

Meeting with renewable, project overview, and

meeting with the other groop, protocol, Mbus,

Obis-codes, current sensor

28.01.2017

29.01.2017

sum week 4 5,00

30.01.2017 6,00

Working on ordering components needed for

measuring ampere and m-bus Tranceiver. Also

done some research on both fields.

31.01.2017 -

01.02.2017 10,00

Worked to find components and parts for the

project, discussed solutions and started the design

of MBUS transceiver

02.02.2017 -

03.02.2017 -

04.02.2017 9,00

Wrote about AMS and MBUS receiver in the

feasibility study. Didresearch and designed first

version of MBUS receiver in Altium.

05.02.2017 5,00

Wrote on issue and execution plan part of the, but

did noet finish the issue

sum week 5 30,00

Group 8 Bachelor’s thesis

7.3.6 Timesheet Sondre Håverstad

Versjon (1.0)

06.02.2017 5,00

Wrote the rest of Issue on feasibility study and

worked on M-Bus receiver design.

07.02.2017 2,00

Research on M-bus and wrote a theoretical

background on M-bus.

08.02.2017 8,00

Did some research on M-Bus and found

documents ablut the theme. Did work some one

the design of the tranceiver.

09.02.2017 3,00 Meeting and Worked on Gant diagram.

10.02.2017 6,00

Discussion about the master unit, and did some

work on the Gantt diagramm and SWOT analysis

11.02.2017

12.02.2017

sum week 6 24,00

13.02.2017 8,00

Helped with the Flowdiagram and did some

research on the ammeter

14.02.2017

15.02.2017 6,00

Worked on the Gantt diagram, and did some

research.

16.02.2017 3,00

Worked on the workplan and wrote about

extensions + research.

17.02.2017 9,00

worked on extensions and master, and correcting

the feasibility report.

18.02.2017 5,00

Completion of feasibility study report, corrercting,

rewriting and such.

19.02.2017

sum week 7 31,00

20.02.2017 9,00

Finished Feasibility study and started with the

MBUS trans design.

21.02.2017 -

22.02.2017 6,00 Group meeting and MBUS design + protocol

23.02.2017 -

24.02.2017 7,50

Worked on the Mbus design, and made it ready

for the milling machine.

25.02.2017 6,50

Did some small changes on the design and wrote

some on the report. + research on mBus

26.02.2017 -

sum week 8 29,00

27.02.2017 3,00

Some small changes on the design and i did send

it to print. Home from school, did som work.

28.02.2017 -

01.03.2017 8,00

Got the board and started soldering, + research

on the slave device.

02.03.2017 6,00

Did the last soldering on Mbus tranceiver, and

started a design on the slave device.

03.03.2017 -

04.03.2017 -

05.03.2017 -

sum week 9 17,00

Group 8 Bachelor’s thesis

Versjon (1.0)

06.03.2017 5,00 Finished design of the slace device, and sent it

07.03.2017 -

08.03.2017 5,00

Research on the new watt meter, and research

slave.

09.03.2017 1,00 Research relay slave.

10.03.2017 8,00

Slave research and ordering some components for

master and slave. Worked on the design slave.

11.03.2017 -

12.03.2017 4,00

Did some work on the Slave and looked for

components to use.

sum week 10 23,00

13.03.2017 3,00 Worked on a solution for the slave, most research.

14.03.2017 1,00 Research slave.

15.03.2017 10,00

Did some research on the Mbus wattmeter +

worked on a solution to powering the mbus.

Ordered parts.

16.03.2017 -

17.03.2017 6,00

Meeting, discussed mBus powering, tested the

Mus tranceiver to see if it worked, debug later. I

found another solution to powering that may

worked, i built it but not tested.

18.03.2017 2,00

research mbus and preparation before testing

mbus powering.

19.03.2017 5,00

Worked on the simple MBUS traceiver for testing

the Watt-meter with MBUS interface. Simulated

an buildt the design.

sum week 11 27,00

20.03.2017 8,00

Tested the Simple MBUS design with Jan Roar, we

got it to work and did manage to receive the

information from it. I started creating components

for PCB design in Altium. Ready to create it.

21.03.2017 2,00

Finished drawing the Simple MBUs tranceiver, it is

now ready for print. There only a few practical

things to check tomorrow.

22.03.2017 7,00

Sendt the simple mbus to printing and tested it

once more. Got the parts for the slave device,

imported models to altium. And worked on

design.

23.03.2017 - Sick

24.03.2017 - Sick

25.03.2017 - Sick

26.03.2017 - Sick

sum week 12 17,00

Group 8 Bachelor’s thesis

Versjon (1.0)

27.03.2017 8,00

Tried to solder the finsihed simple mbus traceiver,

but it failed, i have done some mistakes that i

should have known about, so i was forced to

createate a new one. That i did, and sendt it to

print.

28.03.2017 3,00

Created some block diagrams over the Hardware

and wrote some on the MBUS under Theoretical

background.

29.03.2017 8,00

I got the new pcb, i did solder two simple mbus

tranceivers and both worked fine. I made a

adapter for USB to usb for the Master and a

adapter that let ut mount the nrf52 on DIN-rail. I

also made the 12V-to 3.3V regulator and sendt it

to print.

30.03.2017 2,00

Research Uart and looking for a solution for

permanently powering MBUS with 36V.

31.03.2017 6,00

Soldered the USB adapter, the 12V to 3.3V

converter and got it working. And buildt the

master / wattmeter box with the component

avaible

01.04.2017 -

02.04.2017 4,50

Think i found a solution to the mbus powering

problem, and worked on Block diagram over the

hardware in lucidchart.

sum week 13 31,50

Group 8 Bachelor’s thesis

Versjon (1.0)

03.04.2017 10,00

Tested the mbus tranceiver for fault, found out

the fault was in the code. Tested the relay with

swich against the nrf52. integrated all the circuits

into a design and sendt it to print. Worked with

the Bachelor report, made some pictures.

04.04.2017 -

05.04.2017 6,00

Worked on the report, i wrote about the simple

mbus tranceivier and workedon the Master

design.

06.04.2017 4,00

Worked on the report and wrote about the

master and did some work on the Master design.

07.04.2017 6,00

Worked on th report, re-wrote the test report and

about the master hardwae solution. Did some

research on buck boost.

08.04.2017 11,00

Isoldered two slaved today, 12V to 3.3V regulator

worked, 12V to 9V regulator also worked without

circuitry faults. But teh 3v3 powering of nRF52

failed, i think i killed a nrf… did some research

and worked ona solution.

09.04.2017 -

sum week 14 37,00

10.04.2017 2,00 Worked on designing the master

11.04.2017 3,00

Worked on designing buck boost converter master

and wrote a test report from notes into the

report.

12.04.2017 7,50

Meeting with the group and planning. I fixed

some faults on the slave design but we did not

manage to get the temperature sensor working.

13.04.2017 3,00

Wrote some on the lab reports and worked on

some faults in the Altium master design.

14.04.2017 5,50

Worekd on the report and developing of master

design.

15.04.2017 2,00 Worked on the report.

16.04.2017 5,00

Worked on the report, bust most of the time

worked on Buck boost design, master.

sum week 15 28,00

Group 8 Bachelor’s thesis

Versjon (1.0)

17.04.2017 5,00

Worked on the report and , almost finished the

Master design. It may be ready for print this week.

18.04.2017 -

19.04.2017 10,00

Completed the master design, and sendt it to

print,i found out the buck boost converter with

help form supervisors. Found a fault on slaves,

one bad solder and one defect component. We

also did a meeting with the supervisors.

20.04.2017 -

21.04.2017 4,00 Worked on the report, Master design.

22.04.2017 5,00 Worked on the report, Schematic and slave.

23.04.2017 3,00

Worked on the report, Lab test report and i did

rewrite some on MBUS.

sum week 16 27,00

24.04.2017 8,00

Soldered the master, it is now ready for testing,

we had a group meeting.

25.04.2017 -

26.04.2017 9,00

Tested the master design with Eivind, the rest of

the test will be tested on Friday. Integrated

master into fuse box with DIN rail mount. Wrote

on the slave part on the report.

27.04.2017 2,00 Worked on the repost, slave hardware.

28.04.2017 6,00

Tested the master and meeting about the report,

we made some modifications to the outline.

Wrote some on the slave hardware.

29.04.2017 2,00 Relay slave design in the report.

30.04.2017 5,00 Worked on the report, master design.

sum week 17 32,00

Group 8 Bachelor’s thesis

Versjon (1.0)

01.05.2017 6,00

Worked on the report, problem definition,

background and design spesefication

02.05.2017 -

03.05.2017 9,00

Meeting with supervisors and writing on the

report.

04.05.2017 2,00 Worked on the report

05.05.2017 6,00 Worked on the report

06.05.2017 -

07.05.2017 4,00 Worked on the report

sum week 18 27,00

08.05.2017 10,50

Worked on the report, and group meeting.

Started on the discussion and finished the

meeting reports.

09.05.2017 8,00 Worked on the report, discussion, calculations.

10.05.2017 8,00

Worked on the report, finished for deliverance to

the supervisors

11.05.2017 11,00

Worked on the report and meeting with

supervisors.

12.05.2017 10,00 Finish report

13.05.2017 10,00 Finish report

14.05.2017 10,00 Finish report

sum week 19 67,50

Group 8 Bachelor’s thesis

Versjon (1.0)

Name Date Hours Description

Jan Roar Mydland 09.01.2017 5,00 Planning the project and start-up meeting

10.01.2017 7,50

Starting to check out free Rtos and project

panning

11.01.2017 2,00

Studying FreeRTOS, by reading and watching

clips on youtube

12.01.2017 2,00

Studying FreeRTOS, by reading and watching

clips on youtube

13.01.2017

14.01.2017

15.01.2017

sum week 2 16,50

16.01.2017 6,00 Project description and planning

17.01.2017 7,00 Meating with other group, project planning

18.01.2017 -

19.01.2017 -

20.01.2017 2,00

Some studying of nRF52, and the nRF52832

chip

21.01.2017 -

22.01.2017 -

sum week 3 15,00

23.01.2017 -

24.01.2017 -

25.01.2017 -

26.01.2017 -

27.01.2017 4,00

Meeting with renewable, project overview,

and meeting with the other group, protocol,

Mbus, Obis-codes, current sensor. And some

studying of the nrf 52 datasheet.

28.01.2017

29.01.2017

sum week 4 4,00

30.01.2017 6,00

Studying of BLE. And starting to look on GCC in

order to compiles larger than 32kB.

31.01.2017 8,00

01.02.2017 12,00

Reading about RTOS, and finding out how to

use it.

02.02.2017 -

03.02.2017 -

04.02.2017 -

05.02.2017 -

sum week 5 26,00

Group 8 Bachelor’s thesis

7.3.7 Timesheet Jan Roar T. Mydland

Versjon (1.0)

06.02.2017

07.02.2017

08.02.2017 4,00 Some more reading about FreeRTOS.

09.02.2017 6,00

Finished reading about FreeRTOS. Started

writing on the feasibility study report.

10.02.2017 5,00

Started thinking about the SDL diagram. And

discussion in group about what to do.

11.02.2017

12.02.2017

sum week 6 15,00

13.02.2017 8,00

Working on the float chart of the master

central. And some resource about

timer,uart,saadc on the nrf52 documentation.

14.02.2017 8,00 Writing in the report about FSM.

15.02.2017 8,00

Meeting in the beginning of the day. Finishing

the flowdiagram of both central device and

slace device. Some more writing in the

feasibility study report.

16.02.2017 1,00 Some resource about nrf52

17.02.2017 -

18.02.2017 7,00 Writing in the report about algorithm.

19.02.2017 3,50

Finish writing about FSM and RTOS. Think the

feasibility study report is almost finish now.

sum week 7 35,50

20.02.2017 -

21.02.2017 -

22.02.2017 8,00

Meeting with the group. And starting making a

uart dummy from an arduino

23.02.2017 6,00

Continued with the uart dummy. And reading

about the obis protocol

24.02.2017 8,00

Manage to get connection over uart, and send

it to my phone via ble.

25.02.2017 -

26.02.2017 -

sum week 8 22,00

27.02.2017 1,00 Some small reasource about freertos

28.02.2017 -

01.03.2017 11,00

Implemented FreeRTOS with a master BLE

controller.

02.03.2017 -

03.03.2017 -

04.03.2017 -

05.03.2017 1,00 Started creating task for uart event handler.

sum week 9 13,00

Group 8 Bachelor’s thesis

Versjon (1.0)

06.03.2017 9,00

Some github work, and some more studying of

BLE to figure out what is realy happening. And

to make sure we can get FreeRTOS to work

fine.

07.03.2017 9,00

First some more studying about BLE. Then

some work on the FreeRTOS, activatet

nrf_logg. And then I got a lot of errors. Trying

to figure out what it is.

08.03.2017 5,00

Some more figuring out what is happening

with the FreeRTOS in the central device.

09.03.2017 9,00

Found out that it wasn’t softdevice that caused

the problem. But the implementation of the

uart module. Found how to make larger heap

size in order to get more task

10.03.2017 7,00

Found out the problem. Had to init uart before

logging. Picked up the m-bus reader from

school. And started planning the uart

implementation. Made a .c and .h file for the

uart implementation.

11.03.2017 2,00

Some small writing in the kladd, and startet

planning the m-bus implementation

12.03.2017 2,00

Some small writing in the kladd, and startet

planning the m-bus implementation

sum week 10 43,00

13.03.2017 2,00

Some more implementation of the m_bus

receiver code

14.03.2017 2,00

Some more implementation of the m_bus

receiver code

15.03.2017 12,00

Implementation of m_bus receiver. Setting

opp a logic logger. Meeating with supervisors.

16.03.2017 13,00

Continued with the m_bus_receiver

implemantation. Metting with the other

groups at renewable. Made a dummy

m_bus_receiver out of another nrf52

17.03.2017 6,00

Meeting in the group, discussed solution on

the m_bus power with Sondre. Some more

work on the m_bus uart module. Studying uart

app module on nrf52. And figuring out mutex

and semaphores in the freertos.

18.03.2017 6,00 Continued on the m_bus uart receiver .

19.03.2017 2,00

Continued on the m_bus uart receiver . Trying

to figure out how to receive uart rx events.

Thinking about using a queue.

sum week 11 43,00

Group 8 Bachelor’s thesis

Versjon (1.0)

20.03.2017 9,00

Working on the receiving of m_bus items over

uart. Think I have figured out a neet design.

Starting to see if it works. Also testet the

m_bus meter with Sondre.

21.03.2017 3,00

Just som uart work, trying to figure out why

the m_bus dummy nrf52 wont work.

22.03.2017 6,50

Testint central ageinst our m_bus receiver. Did

order to get response, and save it. And then

send it to the controller task. Startet working

on the flow chart, and some notes.

23.03.2017 1,00

24.03.2017 -

25.03.2017 7,00 Working on the algoritm of the central device.

26.03.2017 3,00

Fixing the box with the m_bus receiver.

Implementet some new functions in the

m_bus receiver file. Fixed the header file for

m_bus_receiver.

sum week 12 29,50

27.03.2017 8,00 Continued working on the uart.

28.03.2017

29.03.2017 6,00

Working on the uart, meeting in the group.

Testing m_bus

30.03.2017 -

31.03.2017 7,00

Working on the uart, and testing against the m

bus meter. Seems like it worked fine

01.04.2017 5,00

Had major problems with the m bus, did get

error codes on the nrf52. Trying to figure out

what was wrong. It is the uart callback that

triggers the message.

02.04.2017 5,00

Trying to figure out what it is that triggers the

fault. My conclusion is that the RX pin on nrf52

is always logic '0'. And it should be logic high or

'1'. And some small work in the report.

sum week 13 31,00

Group 8 Bachelor’s thesis

Versjon (1.0)

03.04.2017 -

04.04.2017 1,00

Just looking on the code to see if something

looked ud in the uart. Didn`t seem like that

05.04.2017 11,00

troubleshooting the uart to m_bus converter.

Found out that one of the input pin wasn’t

connected to anything. Fixed a short cut, then

everything worked. The uart worked. Merged

my file with Eivinds file. Looked like we are

getting pretty closed to a first test demo

project.

06.04.2017 8,00 Working on flow chart of the uart module

07.04.2017 8,00

Testing and discussing freertos with Eivind.

Figured out a new way of implenting the uart.

08.04.2017 6,00

Started the new way of implementing the uart.

Was reading in the m bus lecture.

09.04.2017 -

sum week 14 34,00

10.04.2017 8,00 working on uart.

11.04.2017 -

12.04.2017 6,00 meeting in the group. Continued with uart.

13.04.2017 1,00 Flowchart uart

14.04.2017 1,00 Flowchart uart

15.04.2017 1,00 Flowchart uart

16.04.2017 -

sum week 15 17,00

17.04.2017 -

18.04.2017 11,00

Flowchart uart, and writing in the theory part

of the report.

19.04.2017 11,00

Coding, and testing. Including meeting in the

group. And with the supervisors.

20.04.2017 2,00 Work on flowchart

21.04.2017 2,00 Work on flowchart

22.04.2017 2,00 Work on flowchart

23.04.2017 4,00 Work on flowchart, and report writing

sum week 16 32,00

24.04.2017 8,00

Working on the flowchart. Meeting in the

group.

25.04.2017 -

26.04.2017 -

27.04.2017 7,00 Work on the flowchart

28.04.2017 8,00

Work on the flowchart, got thru the report

with the group

29.04.2017 7,00 Work on the flowchart. Finish controller_task

30.04.2017 -

sum week 17 30,00

Group 8 Bachelor’s thesis

Versjon (1.0)

01.05.2017 6,00 Worked on the report. Theory part.

02.05.2017 8,00 Worked in the report, theory part.

03.05.2017 8,00

Worked in the report, theory part. And

meeting in the group and with the supervisors.

04.05.2017 11,00

Go thru the code with Eivind. And discussed

some flowchart etc.

05.05.2017 7,00

Meeting in the group. Made some test report,

regarding uart and twi with the logic

analyzator.

06.05.2017 2,00 Flowchart.

07.05.2017 8,00 More flowchart. Almost fineshed it.

sum week 18 50,00

08.05.2017 4,00

Finished the flowchart. Meeting with the

group.

09.05.2017 10,00

Writing in the report, and found out that not

all the flowchart wasn’t finished. So started

drawing the last one.

10.05.2017 -

11.05.2017 9,00 Finish report

12.05.2017 10,00 Finish report

13.05.2017 10,00 Finish report

14.05.2017 10,00 Finish report

sum week 19 53,00

Group 8 Bachelor’s thesis

Versjon (1.0)

Total hours %

Eivind 583,00 36,85 %

Sondre 489,50 30,94 %

Jan 509,50 32,21 %

Tot 1 582,00

Weeks since start 17,71

Avg hours/weeks 89,31

Avg hours/weeks/person 29,77

Group 8 Bachelor’s thesis

7.3.8 Timesheet Total

Versjon (1.0)

Pressemelding

Contact: Eivind Stendal
Lian Platå 31 4638
Kristiansand, Norge

Phone: (+47) 991 66 323
Email: eivindstendal@gmail.com
Date: 13. mai 2017

UIA studenter med smart system til AMS måleren

Når strømleverandørene innfører overpris og høyere priser på morgen og ettermiddag kan dette
systemet være gunstig for deg.

Grimstad, Norge – Juni 1,2017 –Fremføring av bachelor prosjekt på UIA

Strømleverandørene ønsker å jevne ut strømforbruket i Norge, og nå som smarte strømmålere
(AMS) er innført i de fleste norske hjem, har de muligheten til å presse kundene til å tenke på dette
ved bruk av høyere pris ved overforbuk og høyere priser når det gjennomsnittlige forbruket ligger
høyest. Det er typisk på morgenen og ettermiddagen at forbruket er høyest.

Vår oppgave løste dette problemet vet å skru av apparater som det ikke er så viktig at står på i disse
dyre tidspunktene/ tilstandene uten at det skal gå ut over komforten til kunden. Et eksempel kan
være at varmtvannsberederen blir slått av mens du støvsuger for ikke å betale for overforbruk, men
den vil kun bli slått av om temperaturen i berederen er tilstrekkelig høy. Et annet eksempel er at en
ovn blir slått av på dagen når strømmen er dyrest hvis det er mindre enn 2 grader avvik fra ønsket
temperatur i rommet.

Apparater som typisk styres er varme-apparater som varmtvannsbereder eller panelovner. For å
sette opp systemet trenger man ikke fylle huset med nye kabler, alt av kommunikasjon mellom
sentralenheten og apparatene vil gå trådløst.

Deltagere på prosjektet:

Eivind Stendal - Software
Jan Roar T. Mydland - Software
Sondre Håverstad - Hardware

#

1 of 1

Group 8 Bachelor’s thesis

7.4 Appendix C - Press release in Norwegian

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5 Appendix D - Test reports

7.5.1 Testing of the simple M-BUS transceiver circuit

Sondre Håverstad and Jan Roar Mydland
Date: 20.03.17

Introduction/Purpose Since were not able to get the AMS smart meter in time, we was forced to
look for alternatives to show the principle of out system and get the project ready in time. Since we
don’t get the AMS smart meter in time, we ordered a wattmeter with M-BUS interface to show the
principle of our system.

The First M-BUS tranceiver that was made is more complex and is not tested since we don’t have the
AMS. the M-BUS tranceiver also need external powering from the AMS to work. The new wattmeter is
also a slave that needs external powering, and the solution will be to build a simple master that can both
tranceive and receive from UART to M-BUS, plus power the bus. And have some of the key function
as the AMS smart meter does.

The new wattmeter doesn’t send data before it gets a request from the µC, and it do not respond to
unknown queries like for instance wrong address.

Materials

• A circuit based on the one from Github.

• Power supply with 32-36VDC output.

• A µC that communicates through UART (Using the nRF52 µC).

• Salea logic analyzer with related computer software.

Methods

• We started to test the design by simulating it, and it seems to work, design shown in figure 60.

• We used the oscilloscope to check the TX and RX pin, and it seems like the Tranceiver is sending
something but with a length of 2-4uS, which is to short.. shown in figure 61a.

• We measured around the circuit and i think the last transmitting transistor is the problem.

• We measure that the last transistor don’t really put out the signal it receives on the base. We
tried to set Down the baud-rate to 2400 baud from 9600.

• Found out it was a miss connection on the transceiver, PNP transistor, switched Base and emitter.
It seems to work fine and as intended now.

• We connected the watt-meter to the circuit and configured the right setup and right address of the
watt-meter, it responded nicely. Response shown in figure 61b and 62a. Figure 66 shows sending
init on all available addresses, and after that it shows the request from master and response from
wattmeter. Figure 65 shows the response from wattmeter after initialising on the correct address.

• This simple transceiver causes some echo on the RX pin when transceiving, shown in figure 62b,
but the MicroController can only transmit or receive at the time. Figure 63 shows the echo on the
TX pin when RX pin on the microcontroller are sending. On figure 64 we can see that the length
of the echo is only about 6− 7µS, and it seems like this is not a problem.

• The last figure 67 shows that the new wattmeter don‘t respond to unknown queries.

Conclusion This test shows that the simple M-BUS transceiver works and can be used in out circuit.
It is ready to be integrated into the master design. This test also shows that sending request on the
correct address gives us all the data from the new wattmeter. This also shows that sending init (or
request) on the wrong address don‘t give a response.

Versjon (1.0)

Group 8 Bachelor’s thesis

References I (Sondre) found this example online at Github:
https://github.com/rscada/libmbus/blob/master/hardware/MBus_USB.pdf

More information on the Salea logic analyzer can be found here:
https://www.saleae.com/

Figures & Graphs Simulation circuit and results.

Figure 60: Simple M-BUS tranceiver simultaion

(a) Fault sending, simple M-BUS traniceiver (b) Watt-meter respense(Purple) 1

Figure 61: Measurement M-BUS tranceiver

Versjon (1.0)

https://github.com/rscada/libmbus/blob/master/hardware/MBus_USB.pdf

Group 8 Bachelor’s thesis

(a) Watt-meter respense(Purple) 2 (b) Echo on RX pin when Trenceiving

Figure 62: Measurement M-BUS tranceiver 2

Figure 63: Echo seen on the logic analyzer

Figure 64: Length of the echo seen on the logic analyzer

Versjon (1.0)

Group 8 Bachelor’s thesis

Figure 65: Sending init on correct address, and get response as seen on the logic analyzer

Figure 66: Sending init on all addresses, and then sending request as seen on the logic analyzer

Versjon (1.0)

Group 8 Bachelor’s thesis

Figure 67: Sending init to a wrong address and no response as seen on the logic analyzer

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5.2 Testing of the LM317 - 12V to 3v3 regulator circuit

Sondre Håverstad
Date: 30.03.17

Introduction/Purpose A 12V to 3V3 regulator would be beneficial for the project, in order to keep
the micro controllers operative without USB or any other external power supplies. We Intend to use a
230VAC to 12DC transformer and regulate that down to 3v3 in order to power nrf52.

Materials

• Power supply with a 12Vdc output.

• A oscilloscope or multimeter to do measurements with.

• Test probes.

• A breadboard.

• LT1072

• Electrolyte capacitors: 100uF, 10uF.

• Ceramic capacitors: 100n.

• 3 diodes: 1N002.

• Resistors: 300, 470.

Methods

• Drew the circuit in LTSPice and got it working, shown in figure 70a, and the results at figure 71a.

• When the simulation works, construct the circuit shown in figure 70a on the breadboard. Bread-
board circuitry shown in figure 68a.

• Measured the output it did not work, and found ut the capacitor C1 and C2 was connected to
ADJ pin of LT1072 and not ground. Fixed it and it worked fine.

• Applies Any voltage between 12V and down to 5V as shown in figure 69a, and it kept a stable 3v3
output.

• At first resistor R2 equal to 520 Ω, creating a output at 3.6V, which is to close to what nRF52 can
handle. so changed R2 to 470 to get Output voltage a little bit lower to be sure, down to 3-3v3.

Conclusion These measurements shows that the regulator circuit works fine and with the intended
output. It should be ready for integration into both master and slave design.

References The test circuit was taken from the application proposal in the data sheet of the LM317,
Only the values got redesigned [42].

Versjon (1.0)

Group 8 Bachelor’s thesis

Figures & Graphs Simulations and results.

(a) Testing of the 3.3V regulator on breadboard

Figure 68: Measurement regulator 3V3

(a) Simulation results of the 3v3 regulator

Figure 69: Measurement regulator 3V3 2

Versjon (1.0)

Group 8 Bachelor’s thesis

(a) 12V to 3V3 regulator circuit

Figure 70: Measurement regulator

(a) Simulation results of the 3v3 regulator

Figure 71: Measurement regulator 2

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5.3 Testing of the complete slave device circuit

Sondre Håverstad, Eivind Stendal
Date: 08.04.17

Introduction/Purpose The slave device circuit has a 12V input which comes from a external
230VAC to 12Vdc transformer. After the connector on the board it splits into two regulators, one
3v3 regulator to power the board and the other is a 9V regulator which will be used to trigger a relay
though a transistor switch. There is also a LM75B temperature sensor on the board.

Materials

• Power supply with 12VDC output.

• A microController with I2C and GPIO.

Methods

• After soldering, i connected 12Vdc to the board to check of i got the right values as output.

• Tune the power supply to 12Vdc and connect it to the board.

• Measured the the output of both regulators and got 3v3 and 9.6V, and it seems to be working.

• Make a connection between P0.11 to 3v3, this will trigger the relay to close .

• There is a fault with the relay because it wont trigger.

• Measuring over the coil of the relay and it does not see any voltage.

• I found the fault. I missed one 0Ωresistor between the regulator and the relay.

• I discovered that i have forgotten to add a reversed voltage protection to the +12V input. i mount
a diode in this pin.

• Measured the voltage at the temperature sensor and it got 3v3 from the regulator.

• The PCB seems to be working as planned and is ready to be connected to the micro-Controller.

• Connect it to the controller and power it up.

• nRf52 wont power up... i think i killed it.

• 3v3 supply have been connected to VDD and i down know why this doesn’t work. I have been
looking at the hardware files for a while [7.5.3] and i think that i should connect the regulator to
the external power pins at the edge instead of the 3v3 pin-out, because nRF52 has some internal
protection then and a own regulator.

• Made some modifications to the PCB, i removed the direct connection from 3v3 regulator to the
board and made two wires for connection to the external pins at the edge.

• power it up by again and the nrf52 now run without a battery or USB connected.

• Keil cashed after connection of the PCB.

• I checked all connection on the board and found out there must have been a connection from one
of the connectors to ground that i wasn’t able to see. For after i tried to check the spacing between
with a screwdriver , the fault disappeared.

• Reconnect the PCB to the µC.

• There seems to be some trouble with the temperature sensor, it wont respond. there is no voltage
at SCL and SDA pin, it should be pulled high by nrf52. I think it would be better to connect the
temperature sensor directly to the nRf52 and not to the 3v3 regulator, since there is potentially
differences from the regulator to the nrf52 3v3 output.

• Remove the connection from the regulator to the LM75B and create a wire from VDD nrf52 to it.

Versjon (1.0)

Group 8 Bachelor’s thesis

• Measuring the SCL and SDA, it is both pulled high now but there is nothing that’s being sent.

• The temperature sensor seems not to work. I will replace it with a new one.

• The new temperature sensor worked and the design seems to work.

Conclusion It would be beneficial to use the 12V to power the nRF52, since it need to run for a long
time without battery and computer connected, the relay also need the voltage in order to trigger. by
this solution we got a circuit that got it power from 230VAC and is transformed down to 12VDC, and
then regulated down to both 3v3 and 9V. The temperature sensor LM75BD seems to need powering
directly from the nRF52 in order to work.

References Hardware files for the NRF52 https://www.nordicsemi.com/eng/nordic/download_
resource/50980/4/5171612/93935

Figures & Graphs The schematics is placed in the appendix and is found at:
Relay circuit: [7.6.3].

3V3 regulator circuit: [7.6.3].

9V regulator circuit: [7.6.3].

Versjon (1.0)

https://www.nordicsemi.com/eng/nordic/download_resource/50980/4/5171612/93935
https://www.nordicsemi.com/eng/nordic/download_resource/50980/4/5171612/93935

Group 8 Bachelor’s thesis

7.5.4 Testing of the LT1072 - Buck boost converter circuit

Sondre Håverstad
Date: 12.04.17

The purpose of this test i to check of its possible to create a buck boost converter that boost 12V
to about above 30V, so it can be used to power the Meter-bus without a external power supply. For
testing the circuit, it will be constructed on a breadboard. This circuit is chosen because it is familiar
to us from previous work. We know that it works and should be an easy circuit to construct.

Materials

• Electrolyte capacitors: 47uF and 470uF.

• Ceramic capacitor: 3nF.

• LT1072.

• Schottky barrier diode: MBRS340.

• Resistors: 200, 1k, 2k, 52k.

• Inductor: 150uH.

• Power supply with 12Vdc output.

• A multimeter or oscilloscope to do measurements with.

• Simple M-BUS circuit to test the buck boost converter against [7.5.1].

Methods

• Draw the circuit in LTspice to check if the values the current output is correct, circuitry shown in
figure 72.

• Output if the simulation i shown in figure 74a.

• Construct the circuit on the breadboard by following the circuit in figure 72.

• Apply 12 Vdc to the input of the circuit.

• use the oscilloscope to measure the output, mine output shown in figure 73b.

• Connect the buck boost to the simple M-BUS converter by connecting the output of the buck
boost to MBUS+ on the M-BUS converter.

• The output of the buck boost converter falls to 17.89V, this is a problem, because the simple
M-BUS converter need more voltage to transmit the message through M-BUS.

• I reduced resistor R1 to 26kΩ and R2 to 1kΩ , to check if R2 had to high resistance.

• measured the output after connecting the simple M-BUS transceiver, got the same output.

• Got help from a supervisor and it was two pins called E1 and E2 at the LT1072 that wasn’t
connected to ground, causing the voltage to drop when connected to a load.

• Connect pin E1 and E2 to Ground.

• Connect the buck boost to the simple M-BUS converter, and measure the voltage, it should be as
expected, as shown in figure 74b, the ripple voltage shown in figures: 75a and 75b.

Conclusion The Buck boost converter works fine after connecting E1 and E2 to ground. It shouldn’t
have problem powering the simple M-BUS converter. A thing to have in mind to later project is to
connect all unconnected pins to something otherwise you’re told not to.

Versjon (1.0)

Group 8 Bachelor’s thesis

References Datasheet and information about the LT1072:
http://www.linear.com/product/LT1072.

Figures & Graphs Simulation results and circuitry.

Figure 72: Buck boost simulation circuit

(a) Simulation result of the buck boost converter (b) Measurement of the buck boost converter

Figure 73: Measurement buck boost 1

Versjon (1.0)

http://www.linear.com/product/LT1072

Group 8 Bachelor’s thesis

(a) Simulation results the buck boost output

(b) Measurement buck boost output

Figure 74: Measurement buck boost 2

(a) Measurement ripple voltage (b) Measurement ripple Peak-to-Peak

Figure 75: Measurement buck boost 3

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5.5 Testing of the complete master circuit

Sondre Håverstad
Date: 26.04.2017

Introduction/Purpose The master device is a merged version of previous testing and will contain
12V to 3V3 regulator the test report: [7.5.2], the simple M-BUS transceiver [7.5.1] to communicate with
watt-meter with M-BUS interface and a buck boost converter, which purpose is to power the the meter
bus, [7.5.4]. This report is more like a system test, that the whole system works together.

Materials

• Power-supply with 12V output with probes.

• Multimeter.

• Watt meter with M-BUS interface to test simple M-BUS transceiver against.

Methods

• Mount the PCB on the master controller

• Connect 12Vdc adapter to the power jack plug.

• The red led diode lightens up down in the left corner.

• Measured regulator output and it was 2,8V, then changed the 470Ωresistor to 561Ω, the result
was 3.1V, which is acceptable.

• Measured the output at the lower pin at P22, shown in figure 76. The output got measured to
just above 27V, adjusted resistor R61 to 36KΩ, circuit shown in the schematics [7.5.7], resulting
in a 32V which is sufficient.

• 3V3 regulator and the buck boost converter works, its time to test the transceiver.

• figure 76 contains measuring points 1, 2, 3.

• Point 3 is the supply line of the M-BUS, and is connected to the Buck boost, it should hold the
same voltage. measured to 31.5V.

• The voltage at measuring point 1 should be close to 3V, it is the UART RX pin on the NRF52
and is pulled up. I measure the voltage = 2.8V.

• At measuring point 2. should hold around 12 volts and is the voltage divided which transmits the
signal on MBUS-. the Voltage at point 2. is 11.5V.

• All the voltages in the simple M-BUS transceiver circuit seems to be correct, but it needs to be
tested together with the software in another test.

• The transceiver for the AMS smart meter cannot be tested because it is not available.

Conclusion All the the parts of the master design has been individually tested except for the M-BUS
transceiver for the AMS smart meter, its made from the documentations but which will not be tested
in this thesis, because it is not possible. But the hardware needs to be tested against software to ensure
that is function properly, test will be found in the appendix at [7.5.6].

References Buck boost data sheet: [45].
Regulator data sheet: [42].
Simple M-BUS circuit, found at: https://github.com/rscada/libmbus/blob/master/hardware/MBus_
USB.pdf.

Versjon (1.0)

https://github.com/rscada/libmbus/blob/master/hardware/MBus_USB.pdf
https://github.com/rscada/libmbus/blob/master/hardware/MBus_USB.pdf

Group 8 Bachelor’s thesis

Figures & Graphs Figure 76 shows transceivers measuring points.

Figure 76: Simple M-BUS transceiver measuring points

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5.6 Test master software

Eivind Stendal
Date:28.04.2017

Introduction/Purpose The purpose of this test is to check if master BLE protocol and controller
task is doing what it should do.

Materials

• Multimeter

• Phone/ app

• Putty

Methods

• I made a checklist over all functions the master should have.

Data

Versjon (1.0)

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

Figure 77: Checklist for software functionality on master

Conclusion The system is working good, however we get a com error at times, that is triggered by
the UART/m-bus thread. It seems like this is triggered by wrong power level on RX pin, when the
M-Bus is not powered.

Versjon (1.0)

Group 8 Bachelor’s thesis

7.5.7 Test slave software

Eivind Stendal and Jan Roar Mydland
Date:26.04.2017

Introduction/Purpose The purpose of this test is to check if slave device is doing what it should
do, based on the commands from the master. And to test that TWI work as expected.

Materials

• Multimeter

• Power supply 12V

• Putty

• Salea logic analyzer with related computer software

Methods

• I (Eivind) made a checklist over all functions the slave should have. See 78.

• Connected up the Salea logic analyzer on the SCL and SDA pin regarding the TWI.

• Figure 79 shows the request temperature sending and the response from the temperature sensor.

• On the blue lines in channel 1 and 2 on the figure 79 shows a analog view of the data and clock
lines. The curves seems like it is a bit slow to get to a logic high.

Figure 78: Checklist for functionality on slave

Data

Versjon (1.0)

Group 8 Bachelor’s thesis

Conclusion All the functions is working good, however the on-board temperature sensor is not optimal
because of the heat from the microcontroller. For a functional system an external sensor would be
necessary. The sending over TWI works fine, but it can seem like the gpio driver strenght could be set
a little higher or the frequency of the TWI a bit slower in order to get a faster logic high level.

References More information on the Salea logic analyzer can be found here:
https://www.saleae.com/

Figure 79: Sending request and receiving temperature as seen on the logic analyzer

Versjon (1.0)

Comment Description Designator Quantity Mounting Type Value

AD Conncetor Arduino shield AD 1 Through Hole

CAP, SSC, Avknrf52 Capacitor Ceramic C1, C4, C9 3 Surface Mount 100nF

Cap 10uF CAP TANT 10UF 16V 10% 1411 C2 1 Surface Mount 10µF

ECA-1EHG101 CAP ALUM 100UF 20% 25V RADIAL C3 1 Through Hole 100µF

STC Polarized Capacitor (Radial) C5 1 Through Hole 200uF

Cvdd Capacitor Ceramic C6 1 Surface Mount 100n

Csc x2 Capacitor Ceramic C7, C8 2 Surface Mount 330pF

Cap Ceramic Capacitor Ceramic C11 1 Surface Mount 1n

ECE-A1CN470U CAP ALUM 47UF 20% 16V RADIAL C15 1 Through Hole 47µF

EEE-FK1H471AM Electrolytic Capacitors - SMD 470UF 50V FK SMD C17 1 Through Hole 470 uF

LL4148 DIODE GEN PURP 100V 200MA SOD80 D1, D2, D3, D4, D5 5 Surface Mount

NTE573 DIODE D6 1 Through Hole

SRR1260A-151K FIXED IND 150UH 1.55A 260 MOHM I1 1 Surface Mount

IOH Conncetor Arduino shield IOH 1 Through Hole

IOL Conncetor Arduino shield IOL 1 Through Hole

LED red through hole Through Hole Red LED L1 1 Through Hole

TSS721ADR IC TXRX METER BUS 16SOIC O1 1 Surface Mount

LT1072 IC REG MULT CONFIG INV ADJ 8SOIC O2 1 Surface Mount

LM317DCY IC REG LINEAR ADJ 1.5A SOT223-4 O10 1 Surface Mount

RJ45_AMS RJ45 P3 1 Through Hole

Header 9 Header, 9-Pin P11 1 Through Hole

Power jack Pwr connector Jack 9mm P12 1 Through Hole

MBus con 2-Way screw connector P22 1 Through Hole

Pwr_nrf52 Header, 2-Pin P44 1 Through Hole

POWER_UNO Conncetor Arduino shield POWER 1 Through Hole

RES SMD 1206 RES SMD 1.15K OHM 1% 1/4W 1206 R3 1 Surface Mount 470

RC1206JR-07300RL RES SMD 300 OHM 5% 1/4W 1206 R2, R4 2 Surface Mount 300

ERJ-8ENF1001V RES SMD 1K OHM 1% 1/4W 1206 R5, R6 2 Surface Mount 1k

ERJ-8ENF3602V RES SMD 36K OHM 1% 1/4W 1206 R8.1 1 Surface Mount 36k

ERJ-8ENF3011V RES SMD 3.01K OHM 1% 1/4W 1206 R8.2 1 Surface Mount 3.01k

ERJ-8ENF2152V RES SMD 21.5K OHM 1% 1/4W 1206 R9.1 1 Surface Mount 21.5k

RC1206JR-07560RL RES SMD 560 OHM 5% 1/4W 1206 R9.2 1 Surface Mount 560

RC1206FR-0733KL RES SMD 33K OHM 1% 1/4W 1206 R10 1 Surface Mount 33k

ERJ-8ENF3401V RES SMD 3.4K OHM 1% 1/4W 1206 R11.2 1 Surface Mount 3.4k

RC1206FR-07220KL RES SMD 220K OHM 1% 1/4W 1206 R12 1 Surface Mount 220k

RC1206JR-0782RL RES SMD 82 OHM 5% 1/4W 1206 R13 1 Surface Mount 82

Res3 Resistor R14, R15 2 Surface Mount 220

Rris Resistor R16 1 Surface Mount 330

RIDD Resistor R17 1 Surface Mount 30k

Rload Resistor R18 1 Surface Mount 100k

resistor, PWR O1 Resistor R1, R50, R51, R52, R53 5 Surface Mount 0

ERJ-8ENF1001V RES SMD 1K OHM 1% 1/4W 1206 R60, R62 2 Surface Mount 1k

RC1206FR-0724K3L RES SMD 24.3K OHM 1% 1/4W 1206 R61 1 Surface Mount 24.3k

BC547B TRANS NPN 45V 0.1A TO-92 T1, T2 2 Through Hole

BD136 TRANS PNP 45V 1.5A SOT-32 T3 1 Through Hole

BOM master device

Group 8 Bachelor’s thesis

7.6 Appendix E - Hardware schematics

7.6.1 BOM Master

Versjon (1.0)

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\V

ol
ta

ge
_r

eg
_5

V
_L

M
31

7.
Sc

hD
ocD

ra
w

n
B

y:

A
D

J

1

IN
3

O
U

T
2

O
10

LM
31

7D
C

Y
30

0

R
2

G
N

D

10
0n

F
C

4
10
µF

C
2

G
N

D

IN
O

U
T

A
D

J

G
N

D

+1
2V

IN
re

g

0R
1

PW
R

 O
1

D
4

LL
41

48

+3
V

3_
re

g

47
0

R
3

D
2

LL
41

48

D
3

LL
41

48
30

0
R

4
D

1 LL
41

48

10
0µ

F
C

3

L1

G
N

D

So
nd

re
 H

aa
ve

rs
ta

d
1

5

3V
3

re
gu

la
to

r C
irc

ui
t

1.
0

PIC201 PIC202
COC

2
PIC301 PIC302

COC
3

PIC401 PIC402
COC

4

P
I
D
1
0
A

P
I
D
1
0
K

CO
D1

P
I
D
2
0
A

P
I
D
2
0
K
 COD
2

PID30A PID30K
COD

3

P
I
D
4
0
A

P
I
D
4
0
K

CO
D4

PIL101 PIL102
COL

1

PIO1001

PI
O1

00
2

PI
O1
00
3 CO

O1
0

PI
R1
01

PI
R1
02

COR
1

PIR201 PIR202 COR
2

PIR301 PIR302 COR
3

PIR401 PIR402 CO
R4

PID30A
PIO1001

PIR201 PIR302

NL
AD
J

PIC202
PIC302

PIC401

PIL101

PIR301

PIC301

P
I
D
1
0
K

P
I
D
2
0
K

PI
O1
00
3

NLI
N

P
I
D
1
0
A

PI
R1
02

P
I
D
4
0
K
 PO
03
V3
0r
eg

PIL102 PIR401

PI
R1
01

P
O
0
1
2
V
I
N
r
e
g

PIC201
PIC402

P
I
D
2
0
A

PID30K
P
I
D
4
0
A

PI
O1

00
2

PIR202
PIR402

NL
OU

T
PO
03
V3
0R
EG

P
O
0
1
2
V
I
N
R
E
G

Group 8 Bachelor’s thesis

7.6.2 Master schematics & overview

Versjon (1.0)

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\M

as
te

r_
U

ni
t_

V
2.

Sc
hD

oc
D

ra
w

n
B

y:

P0
.1

9
P0

.2
0

P0
.2

2
P0

.2
3

P0
.2

4
R

ES
ET

G
N

D

P0
.0

2

V
IN

1
G

N
D

2
G

N
D

3
5V

4
3V

3
5

R
ES

ET
6

IO
R

EF
78

26
98

92
5

PO
W

ER

IO
8

1
IO

9
2

IO
10

3
IO

11
4

IO
12

5
IO

13
6

G
N

D
7

A
R

EF
8

SD
A

9
SC

L
10

26
98

78
9

IO
H

G
N

D

N
.C

.

P0
.2

6
P0

.2
7

IO
0

1

IO
2

3
IO

3
4

IO
4

5
IO

5
6

IO
6

7
IO

7
8

IO
1

2

26
98

92
5

IO
L

123456789

P1
1

H
ea

de
r 9

P0
.0

1
(3

2.
76

8k
H

z)
P0

.0
0

(3
2.

76
8k

H
z)

P0
.0

5
(U

A
RT

 R
TS

)

P0
.0

7
(U

A
RT

 C
TS

)

P0
.0

9
(N

FC
1)

P0
.1

0
(N

FC
2)

P0
.1

3
(B

U
TT

O
N

 1
)

P0
.1

4
(B

U
TT

O
N

 2
)

P0
.1

5
(B

U
TT

O
N

 3
)

P0
.1

6
(B

U
TT

O
N

 4
)

P0
.1

7
(L

ED
 1

)
P0

.1
8

(L
ED

 2
)

P0
.2

1
(R

es
et

)

P0
.1

2
(U

A
RT

 R
X

D
)

P0
.1

1
(U

A
RT

 T
X

D
)

A
D

0
1

A
D

1
2

A
D

2
3

A
D

3
4

A
D

4
5

A
D

5
6

26
99

07
5

A
D

P0
.0

3
P0

.0
4

P0
.2

8
P0

.2
9

P0
.3

0
P0

.3
1

P0
.2

5
G

N
D

G
N

D

G
N

D

Si
m

pl
e_

R
X

Si
m

pl
e_

TX
Si

m
pl

e_
M

B
us

+
Si

m
pl

e_
M

B
us

-

+3
2V

D
C

_M
B

U
S+

Si
m

pl
e

U
_S

im
pl

e_
M

B
us

_T
ra

nc
ei

ve
r_

Sc
he

m
at

ic
_v

2
Si

m
pl

e_
M

B
us

_T
ra

nc
ei

ve
r_

Sc
he

m
at

ic
_v

2.
Sc

hD
oc

1 2

P2
2

M
B

us
 c

on

Po
w

er
 ja

ck
3 2 1

P1
2

Po
w

er
 ja

ck

D
5

LL
41

48

+3
V

3_
re

g
+1

2V
IN

re
g

U
_V

ol
ta

ge
_r

eg
_5

V
_L

M
31

7
Vo

lta
ge

_r
eg

_5
V

_L
M

31
7.

Sc
hD

oc

TX
+

1

TX
-

2

R
X

+
3 4 5

R
X

-
6 7 8

RJ45

P3 R
J4

5_
A

M
S

0
R

50

0
R

51

0
R

52

0
R

53

M
B

us
+

M
B

us
-

M
B

us
2+

M
B

us
2-

+3
V

3_
uC

+3
V

3_
uC 10

0n
F

C
1

G
N

D

R
X

_M
B

U
S

TX
_M

B
U

S

+3
V

3_
V

D
D

+3
2V

D
C

_M
B

U
S+

M
B

us
2-

M
B

us
2+

U
_M

_b
us

_C
on

ve
rte

r
M

_b
us

_C
on

ve
rte

r.S
ch

D
oc

+3
V

3_
uC

+3
2V

D
C

_M
B

U
S+

PO
W

ER

+1
2V

IN
B

O
O

ST

U
_B

uc
k_

B
oo

st
_C

on
ve

rte
r

B
uc

k_
B

oo
st

_C
on

ve
rte

r.S
ch

D
oc

1 2

P4
4

Pw
r_

nr
f5

2

G
N

D

P0
.0

8
(U

A
RT

 R
X

D
)

P0
.0

6
(U

A
RT

 T
X

D
)

M
B

us
2+

M
B

us
2-

M
B

us
2-

M
B

us
2+

P0
.1

1
(U

A
RT

 T
X

D
)

P0
.1

2
(U

A
RT

 R
X

D
)

P0
.0

6
(U

A
RT

 T
X

D
)

P0
.0

8
(U

A
RT

 R
X

D
)

M M
1

M M
2

M M
3

M M
4

P0
.1

2
(U

A
RT

 R
X

D
)

P0
.1

1
(U

A
RT

 T
X

D
)

P0
.0

8
(U

A
RT

 R
X

D
)

P0
.0

6
(U

A
RT

 T
X

D
)

So
nd

re
 H

aa
ve

rs
ta

d
2

5

M
as

te
r c

irc
ui

t

1.
0

M
B

us
+

M
B

us
-

P
I
A
D
0
1

P
I
A
D
0
2

P
I
A
D
0
3

P
I
A
D
0
4

P
I
A
D
0
5

P
I
A
D
0
6
 CO
AD

PIC101 PIC102
COC

1

P
I
D
5
0
A

P
I
D
5
0
K

CO
D5

P
I
I
O
H
0
1

P
I
I
O
H
0
2

P
I
I
O
H
0
3

P
I
I
O
H
0
4

P
I
I
O
H
0
5

P
I
I
O
H
0
6

P
I
I
O
H
0
7

P
I
I
O
H
0
8

P
I
I
O
H
0
9

P
I
I
O
H
0
1
0

CO
IO
H

P
I
I
O
L
0
1

P
I
I
O
L
0
2

P
I
I
O
L
0
3

P
I
I
O
L
0
4

P
I
I
O
L
0
5

P
I
I
O
L
0
6

P
I
I
O
L
0
7

P
I
I
O
L
0
8

CO
IO
L

PIM
101

 COM
1

PIM
201

 CO
M2

PIM
301

 CO
M3

PIM
401

 CO
M4

PI
P3
01

PI
P3
02

PI
P3
03

PI
P3
04

PI
P3
05

PI
P3
06

PI
P3
07

PI
P3
08
 COP
3

P
I
P
1
1
0
1

P
I
P
1
1
0
2

PI
P1

10
3

P
I
P
1
1
0
4

P
I
P
1
1
0
5

P
I
P
1
1
0
6

P
I
P
1
1
0
7

PI
P1

10
8

P
I
P
1
1
0
9

CO
P1
1

PI
P1
20
1

PI
P1
20
2

PI
P1
20
3

CO
P1
2

PI
P2

20
1

PI
P2

20
2 CO
P2
2

P
I
P
4
4
0
1

P
I
P
4
4
0
2
 COP
44

P
I
P
O
W
E
R
0
1

P
I
P
O
W
E
R
0
2

P
I
P
O
W
E
R
0
3

P
I
P
O
W
E
R
0
4

P
I
P
O
W
E
R
0
5

P
I
P
O
W
E
R
0
6

P
I
P
O
W
E
R
0
7

P
I
P
O
W
E
R
0
8
 CO
PO
WE
R

PI
R5
00
1

PI
R5
00
2

CO
R5
0 PI

R5
10
1

PI
R5
10
2

CO
R5
1 PI

R5
20
1

PI
R5
20
2

CO
R5
2 PI

R5
30
1

PI
R5
30
2

CO
R5
3

PIC102

P
I
P
O
W
E
R
0
5

PIC101
P
I
I
O
H
0
7

PI
P1
20
1

PI
P1
20
2

P
I
P
4
4
0
2

P
I
P
O
W
E
R
0
2

P
I
P
O
W
E
R
0
3

NL
GN

D

PI
R5
00
2

PI
R5
20
2

NL
MB

us
20

PI
R5
10
2

PI
R5
30
2

NL
MB

us
20

PI
P2

20
1

NL
MB
us
0

PI
P2

20
2

NL
MB

us
0

P
I
P
O
W
E
R
0
1

NLN
0C0

P
I
D
5
0
A

PI
P1
20
3

P
I
D
5
0
K

PI
P3
01

PI
R5
00
1

PI
P3
02

PI
R5
10
1

PI
P3
03

PI
R5
20
1

PI
P3
04

PI
P3
05

PI
P3
06

PI
R5
30
1

PI
P3
07

PI
P3
08

P
I
P
4
4
0
1

P
I
P
O
W
E
R
0
4

P
I
P
O
W
E
R
0
7

P
I
P
O
W
E
R
0
8

P
I
P
1
1
0
1
 NL
P0

00
0

(3
20

76
8k

Hz
)

P
I
P
1
1
0
2
 NL
P0

00
1

(3
20

76
8k

Hz
)

P
I
I
O
H
0
8
 NL
P0
00
2

P
I
A
D
0
1

NL
P0

00
3 P
I
A
D
0
2

NL
P0

00
4

P
I
P
1
1
0
4
 NL
P0
00
5
(U
AR
T
RT
S)

PIM
401

P
I
P
1
1
0
5

NL
P0

00
6

(U
AR

T
TX

D)

P
I
P
1
1
0
6
 NL
P0
00
7
(U
AR
T
CT
S)

PIM
301

P
I
P
1
1
0
7

NL
P0

00
8

(U
AR

T
RX

D)

PI
P1

10
8 N
LP

00
09

 (
NF

C1
)

P
I
P
1
1
0
9
 NL
P0

01
0

(N
FC

2)

P
I
I
O
L
0
1

PIM
201

NL
P0

01
1

(U
AR

T
TX

D)

P
I
I
O
L
0
2

PIM
101

NL
P0

01
2

(U
AR

T
RX

D)

P
I
I
O
L
0
3
 NL
P0

01
3

(B
UT

TO
N

1)

P
I
I
O
L
0
4
 NL
P0

01
4

(B
UT

TO
N

2)

P
I
I
O
L
0
5
 NL
P0

01
5

(B
UT

TO
N

3)

P
I
I
O
L
0
6
 NL
P0

01
6

(B
UT

TO
N

4)

P
I
I
O
L
0
7
 NL
P0

01
7

(L
ED

 1
)

P
I
I
O
L
0
8
 NL
P0

01
8

(L
ED

 2
)

P
I
I
O
H
0
1
 NL
P0
01
9

P
I
I
O
H
0
2
 NL
P0
02
0

PI
P1

10
3 NL

P0
02

1
(R

es
et

)

P
I
I
O
H
0
3
 NL
P0
02
2

P
I
I
O
H
0
4
 NL
P0
02
3

P
I
I
O
H
0
5
 NLP

002
4

P
I
I
O
H
0
6
 NL
P0
02
5

P
I
I
O
H
0
9
 NL
P0
02
6

P
I
I
O
H
0
1
0
 NLP

002
7

P
I
A
D
0
3

NL
P0

02
8 P
I
A
D
0
4

NL
P0

02
9 P
I
A
D
0
5

NL
P0

03
0 P
I
A
D
0
6

NL
P0
03
1 P
I
P
O
W
E
R
0
6

NL
RE

SE
T

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\S

im
pl

e_
M

B
us

_T
ra

nc
ei

ve
r_

Sc
he

m
at

ic
_v

2.
Sc

hD
oc

D
ra

w
n

B
y:

36
k

R
8.

1

3.
01

k
R

8.
2

22
0k

R
12

82R
13

3.
4k

R1
1.

2

21
.5

k
R

9.
1

1kR
5

1kR
6

33
k

R
10

56
0

R
9.

2

N
PN

B
C

54
7B

T1

N
PN

B
C

54
7B

T2

PN
P

B
D

13
6

T3

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

N
2

N
2

M
B

us
-

M
B

us
+

Si
m

pl
e_

R
X

Si
m

pl
e_

TX

Si
m

pl
e_

M
B

us
+

Si
m

pl
e_

M
B

us
-

+3
2V

D
C

_M
B

U
S+

Si
m

pl
e

So
nd

re
 H

aa
ve

rs
ta

d
3

5

Si
m

pl
e

M
B

U
S

tra
nc

ei
ve

re

1.
0

PI
R5
01

PI
R5
02

COR
5

PI
R6
01

PI
R6
02
 COR
6

PIR80101 PIR80102 CO
R8
01

PIR80201 PIR80202 COR
802

PIR90101 PIR90102 CO
R9
01

PIR90201 PIR90202 COR
902

PIR1001 PIR1002 CO
R1
0

PIR110201 PIR110202

CO
R1

10
2

PIR1201 PIR1202 CO
R1
2

PIR1301 PIR1302 CO
R1
3

PIT101
P
I
T
1
0
2

PIT103 COT
1

PIT201
P
I
T
2
0
2

PIT203 COT
2

PIT301 PIT302
P
I
T
3
0
3

COT
3

PIR90101

PIR110201

PIR1301

PIT103

PIT203

PIR80101

PIR1002

PIR1202

NL
MB

us
0

P
O
0
3
2
V
D
C
0
M
B
U
S
0
S
i
m
p
l
e

PO
Si
mp
le
0M
Bu
s0

PIR1201 PIT301
NL
MB
us
0

P
O
S
i
m
p
l
e
0
M
B
u
s
0

PIR1302
P
I
T
2
0
2

PIT302
NLN

2

PI
R5
01

P
O
S
i
m
p
l
e
0
R
X

PI
R5
02

PIR1001
PIR110202

PIT201

PI
R6
01

P
I
T
1
0
2

PI
R6
02

P
O
S
i
m
p
l
e
0
T
X

PIR80102 PIR80201 PIR80202
PIR90202

PIT101

P
I
T
3
0
3

PIR90102 PIR90201

P
O
0
3
2
V
D
C
0
M
B
U
S
0
S
I
M
P
L
E

PO
SI
MP
LE
0M
BU
S0

P
O
S
I
M
P
L
E
0
R
X

P
O
S
I
M
P
L
E
0
T
X

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\M

_b
us

_C
on

ve
rte

r.S
ch

D
oc

D
ra

w
n

B
y:

TS
S7

21
A

D
R

B
U

SL
2

1

V
B

2

STC

3

RIDD

4

PF
5

SC

6

TX
I

7
TX

8

BA
T

9

V
S

10

V
D

D
11

R
X

12

R
X

I
13

RIS

14

GND

15

B
U

SL
1

16

O
1

TSS721ADR

22
0

R
14

R
es

3

22
0

R
15

R
es

3

33
0

R
16 R
ris

30
k

R
17

R
ID

D
10

0k

R
18

R
lo

ad

10
0n

C
6

C
vd

d

R
X

I

TX
I

M
B

U
SL

2

M
B

U
SL

1

33
0p

F

C
7

C
sc

33
0p

F

C
8

C
sc

+3
2V

D
C

_M
B

U
S+

R
X

_M
B

U
S

TX
_M

B
U

S

M
B

us
2+

M
B

us
2-

+3
V

3_
V

D
D

20
0u

F

C
5

ST
C

10
0n

F

C
9 SS

C

G
N

D

TS
S7

21
_V

D
D

BA
T

M
bu

s_
G

N
D

STC

RIDD

SC

RIS

M M
10

M M
11 M M
12

M M
15

M
B

U
SL

2

M
B

U
SL

1

TS
S7

21
_V

D
D

ST
C

So
nd

re
 H

aa
ve

rs
ta

d
4

5

M
et

er
 B

us
 T

ra
nc

ei
ve

r

1.
0

PIC501 PIC502

COC
5

PIC601 PIC602
CO
C6

PIC701 PIC702
COC

7

PIC801 PIC802
COC

8

PIC901 PIC902
COC

9

PIM
100

1 CO
M1
0

PIM
110

1 CO
M1
1

PIM
120

1 CO
M1
2

PIM
150

1 CO
M1
5

P
I
O
1
0
1

P
I
O
1
0
2

PIO103
PIO104

PI
O1

05

PIO106

P
I
O
1
0
7

P
I
O
1
0
8

P
I
O
1
0
9

PI
O1
01
0

PI
O1
01
1

PI
O1
01
2

PI
O1
01
3

PIO1014
PIO1015

PI
O1
01
6 COO

1

PI
R1
40
1

PI
R1
40
2

CO
R1
4

PI
R1
50
1

PI
R1
50
2

CO
R1
5

PIR1601 PIR1602 CO
R1
6

PIR1701 PIR1702 CO
R1
7

PIR1801 PIR1802 CO
R1
8

PIC901
P
I
O
1
0
9
 NL
BA

T
PO

03
V3

0V
DD

PIC902

PIC502
PIC601

PIC802

PIO1015

PIR1601
PIR1701

PIR1801
NL
Mb
us
0G
ND

PIM
110

1

PI
O1
01
6

PI
R1
50
2

NL
MB

US
L1

PIM
100

1

P
I
O
1
0
1

PI
R1
40
2

NL
MB
US
L2

PIC702 PIC801

P
I
O
1
0
2

PI
O1

05

P
I
O
1
0
8

PI
O1
01
0

PI
O1
01
2

PI
R1
40
1

P
O
0
3
2
V
D
C
0
M
B
U
S
0

P
O
M
B
u
s
2
0

PI
R1
50
1

P
O
M
B
u
s
2
0

PIO104 PIR1702 NLRIDD
PIO1014 PIR1602 NLRI

S

PI
O1
01
3 NL

RX
I
P
O
R
X
0
M
B
U
S

PIC701 PIO106 NLS
C

PIC501

PIM
150

1

PIO103

NL
ST
C

PIC602

PIM
120

1

PI
O1
01
1

PIR1802

NL
TS
S7
21
0V
DD

P
I
O
1
0
7
 NL
TX
I
P
O
T
X
0
M
B
U
S

PO
03

V3
0V

DD

P
O
0
3
2
V
D
C
0
M
B
U
S
0

P
O
M
B
U
S
2
0

P
O
R
X
0
M
B
U
S

P
O
T
X
0
M
B
U
S

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\B

uc
k_

B
oo

st
_C

on
ve

rte
r.S

ch
D

ocD
ra

w
n

B
y:

+3
2V

D
C

_M
B

U
S+

PO
W

ER

G
N

D

1

V
c

2

FB
3

SW
7

Vi
n

5 LT
10

72

O
2

LT
10

72

15
0µ

H

I1
+1

2V
IN

B
O

O
ST

Vi
n_

B
uc

k G
N

D

SW
_B

uc
k

FB
_B

uc
k

V
c_

B
uc

k

1nC1
1

1kR
60

G
N

D
G

N
D

D
6

N
TE

57
3

47
µF

C
15

G
N

D

47
0

uF
C

17

G
N

D

R
em

em
be

r t
o

co
nn

ec
t p

in
 E

1
an

d
E2

 to
 G

ro
un

d.
1kR

62

24
.3

k
R

61

So
nd

re
 H

aa
ve

rs
ta

d
5

5

B
uc

k
bo

os
t c

on
ve

rte
r c

irc
ui

t

1.
0

PIC1101 PIC1102
COC

11

PIC1501 PIC1502
COC

15
PIC1701 PIC1702

CO
C1
7

P
I
D
6
0
1

P
I
D
6
0
2

CO
D6

PI
I1
01

PI
I1
02

COI1

PIO201

P
I
O
2
0
2

P
I
O
2
0
3

PIO205
P
I
O
2
0
7
 CO
O2

PIR6001 PIR6002 CO
R6
0

PIR6101 PIR6102 CO
R6
1

PIR6201 PIR6202 CO
R6
2

P
I
O
2
0
3

PIR6101 PIR6202

NL
FB
0B
uc
k

PIC1502
PIC1702

PIO201

PIR6001
PIR6201

PIC1101 PIR6002

PIC1701

P
I
D
6
0
2

PIR6102

P
O
0
3
2
V
D
C
0
M
B
U
S
0
P
O
W
E
R

P
I
D
6
0
1

PI
I1
02

P
I
O
2
0
7
 NL
SW

0B
uc

k PIC1102
P
I
O
2
0
2
 NL
Vc
0B
uc
k

PIC1501

PI
I1
01

PIO205

NL
Vi

n0
Bu

ck

P
O
0
1
2
V
I
N
B
O
O
S
T

P
O
0
1
2
V
I
N
B
O
O
S
T

P
O
0
3
2
V
D
C
0
M
B
U
S
0
P
O
W
E
R

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

7.6.3 Result master PCB

Versjon (1.0)

Comment Description Designator Mounting Type Quantity Value

RC1206FR-071K5L RES SMD 1.5K OHM 1% 1/4W 1206 R30 Surface Mount 1 1.5k

Cap 100uF CAP TANT 100UF 16V 10% 2917 C3, C30 Surface Mount 2 100µF

Cap 10uF CAP TANT 10UF 16V 10% 1411 C2, C20 Surface Mount 2 10µF

Cap Capacitor ceramic 1206 C1, C10 Surface Mount 2 100nF

LM317DCY IC REG LINEAR ADJ 1.5A SOT223-4 O1, O2 Surface Mount 2

RC1206JR-07300RL RES SMD 300 OHM 5% 1/4W 1206 R1, R10 Surface Mount 2 300

RC1206JR-07470RL RES SMD 470 OHM 5% 1/4W 1206 R2, R20 Surface Mount 2 470

Diode 1N4002 DIODE GEN PURP 100V 200MA SOD80 D1, D2, D3, D7, D10, D20, D30 Through Hole 7

Pwr_-3V3, -o1_res Resistor R9, R4, R14, R16 Surface Mount 4 0

+12Vin 2-Way screw connector P2 Through Hole 1

AD Conncetor Arduino shield AD Through Hole 1

Header 9 Header, 9-Pin P11 Through Hole 1

IOH Conncetor Arduino shield IOH Through Hole 1

IOL Conncetor Arduino shield IOL Through Hole 1

LL4148 DIODE GEN PURP 100V 200MA SOD80 D45 Surface Mount 1

nrf52_pwr Header, 2-Pin P17 Through Hole 1

POWER_UNO Conncetor Arduino shield POWER Through Hole 1

230V ON/OFF MKDS 5/ 2-6,35 P1 Through Hole 1

230VAC, 16A Relay Q2 Through Hole 1

BC547B TRANS NPN 45V 0.1A TO-92 T10 Through Hole 1

ERJ-8ENF1001V RES SMD 1K OHM 1% 1/4W 1206 R12 Surface Mount 1 1k

Avk LM75B Capacitor ceramic 1206 C13 Surface Mount 1 100pF

LM75BD LM75BD Q4 Surface Mount 1

OS, SCL, SDA Resistor R3, R5, R6 Surface Mount 4 4.7k

BOM slave device

Group 8 Bachelor’s thesis

7.6.4 BOM Slave

Versjon (1.0)

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\S

la
ve

_d
ev

ic
e.

Sc
hD

oc
D

ra
w

n
B

y:

P0
.1

9
P0

.2
0

P0
.2

2
P0

.2
3

P0
.2

4
RE

SE
T

V
D

D

G
N

D

P0
.0

2(
O

S)

V
IN

1
G

N
D

2
G

N
D

3
5V

4
3V

3
5

RE
SE

T
6

IO
RE

F
78

26
98

92
5

PO
W

ER

IO
8

1
IO

9
2

IO
10

3
IO

11
4

IO
12

5
IO

13
6

G
N

D
7

A
RE

F
8

SD
A

9
SC

L
10

26
98

78
9

IO
H

G
N

D

N
.C

.

5V
5V

SC
L

SD
A

O
S

V
D

D
_L

M
75

B

U
_L

M
75

B
LM

75
B

.S
ch

D
oc

P0
.2

6(
SD

A
)

P0
.2

7(
SC

L)

V
D

D

IO
0

1

IO
2

3
IO

3
4

IO
4

5
IO

5
6

IO
6

7
IO

7
8

IO
1

2

26
98

92
5

IO
L

123456789

P1
1

H
ea

de
r 9

P0
.0

1
(3

2.
76

8k
H

z)
P0

.0
0

(3
2.

76
8k

H
z)

P0
.0

5
(U

A
RT

 R
TS

)
P0

.0
6

(U
A

RT
 T

X
D

)
P0

.0
7

(U
A

RT
 C

TS
)

P0
.0

8
(U

A
RT

 R
X

D
)

P0
.0

9
(N

FC
1)

P0
.1

0
(N

FC
2)

P0
.1

3
(B

U
TT

O
N

 1
)

P0
.1

4
(B

U
TT

O
N

 2
)

P0
.1

5
(B

U
TT

O
N

 3
)

P0
.1

6
(B

U
TT

O
N

 4
)

P0
.1

7
(L

ED
 1

)
P0

.1
8

(L
ED

 2
)

P0
.2

1
(R

es
et

)

P0
.1

2
P0

.1
1

A
D

0
1

A
D

1
2

A
D

2
3

A
D

3
4

A
D

4
5

A
D

5
6

26
99

07
5

A
D

P0
.0

3
P0

.0
4

P0
.2

8
P0

.2
9

P0
.3

0
P0

.3
1

12
P2 +1

2V
in

G
N

D
+9

_r
eg

+1
2V

_I
N

U
_V

ol
ta

ge
_r

eg
_9

v_
LM

31
7

+9
V

_r
eg

_r
el

ay

Re
la

y_
co

nt
ro

l

U
_R

el
ay

_1
6A

P0
.2

5(
O

S)
G

N
D

G
N

D

D
45

LL
41

48

+3
V

3_
re

g
+1

2V
_I

N

U
_V

ol
ta

ge
_r

eg
_3

v3
_L

M
31

7_
v2

Vo
lta

ge
_r

eg
_3

v3
_L

M
31

7_
v2

.S
ch

D
oc

1 2

P1
7

nr
f5

2_
pw

r
G

N
D

So
nd

re
 H

aa
ve

rs
ta

d
1

5

Sl
av

e
ci

rc
ui

t

1.
0

P0
.1

1

P
I
A
D
0
1

P
I
A
D
0
2

P
I
A
D
0
3

P
I
A
D
0
4

P
I
A
D
0
5

P
I
A
D
0
6
 CO
AD

P
I
D
4
5
0
A

P
I
D
4
5
0
K

CO
D4
5

P
I
I
O
H
0
1

P
I
I
O
H
0
2

P
I
I
O
H
0
3

P
I
I
O
H
0
4

P
I
I
O
H
0
5

P
I
I
O
H
0
6

P
I
I
O
H
0
7

P
I
I
O
H
0
8

P
I
I
O
H
0
9

P
I
I
O
H
0
1
0

CO
IO
H

P
I
I
O
L
0
1

P
I
I
O
L
0
2

P
I
I
O
L
0
3

P
I
I
O
L
0
4

P
I
I
O
L
0
5

P
I
I
O
L
0
6

P
I
I
O
L
0
7

P
I
I
O
L
0
8

CO
IO
L

PI
P2
01

PI
P2
02

COP
2

P
I
P
1
1
0
1

PI
P1
10
2

PI
P1
10
3

P
I
P
1
1
0
4

P
I
P
1
1
0
5

P
I
P
1
1
0
6

PI
P1
10
7

P
I
P
1
1
0
8

P
I
P
1
1
0
9

COP
11

P
I
P
1
7
0
1

PI
P1

70
2 CO

P1
7

P
I
P
O
W
E
R
0
1

P
I
P
O
W
E
R
0
2

P
I
P
O
W
E
R
0
3

P
I
P
O
W
E
R
0
4

P
I
P
O
W
E
R
0
5

P
I
P
O
W
E
R
0
6

P
I
P
O
W
E
R
0
7

P
I
P
O
W
E
R
0
8
 CO
PO
WE
R

P
I
P
O
W
E
R
0
4

NL5
V

P
I
I
O
H
0
7

PI
P2
01

PI
P1

70
2

P
I
P
O
W
E
R
0
2

P
I
P
O
W
E
R
0
3

NL
GN

D

P
I
P
O
W
E
R
0
1

NL
N0
C0

P
I
D
4
5
0
A

PI
P2
02

P
I
D
4
5
0
K

P
I
P
1
7
0
1

P
I
P
O
W
E
R
0
7

P
I
P
O
W
E
R
0
8

P
I
P
1
1
0
1
 NL
P0

00
0

(3
20

76
8k

Hz
)

PI
P1
10
2 NL

P0
00

1
(3

20
76

8k
Hz

)

P
I
I
O
H
0
8
 NL
P0

00
2(

OS
)

P
I
A
D
0
1

NL
P0
00
3 P
I
A
D
0
2

NL
P0
00
4

P
I
P
1
1
0
4
 NL
P0

00
5

(U
AR

T
RT

S)

P
I
P
1
1
0
5
 NL
P0

00
6

(U
AR

T
TX

D)

P
I
P
1
1
0
6
 NL
P0

00
7

(U
AR

T
CT

S)

PI
P1
10
7 N
LP

00
08

 (
UA

RT
 R

XD
)

P
I
P
1
1
0
8
 NL
P0

00
9

(N
FC

1)

P
I
P
1
1
0
9
 NL
P0

01
0

(N
FC

2)

P
I
I
O
L
0
1

NL
P0
01
1

P
I
I
O
L
0
2
 NL
P0

01
2

P
I
I
O
L
0
3
 NL
P0

01
3

(B
UT

TO
N

1)

P
I
I
O
L
0
4
 NL
P0

01
4

(B
UT

TO
N

2)

P
I
I
O
L
0
5
 NL
P0

01
5

(B
UT

TO
N

3)

P
I
I
O
L
0
6
 NL
P0

01
6

(B
UT

TO
N

4)

P
I
I
O
L
0
7
 NL
P0

01
7

(L
ED

 1
)

P
I
I
O
L
0
8
 NL
P0

01
8

(L
ED

 2
)

P
I
I
O
H
0
1
 NL
P0

01
9

P
I
I
O
H
0
2
 NL
P0

02
0

PI
P1
10
3 NL

P0
02

1
(R

es
et

)

P
I
I
O
H
0
3
 NL
P0

02
2

P
I
I
O
H
0
4
 NLP
002

3
P
I
I
O
H
0
5
 NL
P0

02
4

P
I
I
O
H
0
6
 NL
P0

02
5(

OS
)

P
I
I
O
H
0
9
 NL
P0
02
6(
SD
A)

P
I
I
O
H
0
1
0
 NL
P0

02
7(

SC
L)

P
I
A
D
0
3

NL
P0
02
8 P
I
A
D
0
4

NLP
002

9 P
I
A
D
0
5

NL
P0
03
0 P
I
A
D
0
6

NL
P0
03
1 P
I
P
O
W
E
R
0
6

NL
RE
SE
T P

I
P
O
W
E
R
0
5

NL
VD

D

Group 8 Bachelor’s thesis

7.6.5 Slave schematics & overview

Versjon (1.0)

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\L

M
75

B
.S

ch
D

oc
D

ra
w

n
B

y:

LM
75

BD
,1

18

SD
A

1
SC

L
2

O
S

3
G

N
D

4

A
2

5
A

1
6

A
0

7
V

D
D

8
Q

4

G
N

D10
0p

F
C1

3
4.

7k

R5 SC
L

4.
7k

R6 SD
A

4.
7k

R3 O
S

P0
.2

7(
SC

L)
P0

.2
6(

SD
A

)
P0

.2
5(

O
S)

G
N

D

0R4 pw
r_

o1
_r

es

Pw
r_

O
1

G
N

D

SC
L

SD
A O
S

V
D

D
_L

M
75

B

Pw
r_

O
1

P0
.2

7(
SC

L)
P0

.2
6(

SD
A

)

P0
.2

5(
O

S)

So
nd

re
 H

aa
ve

rs
ta

d
2

5

Te
m

pe
ra

tu
re

 se
ns

or

1.
0

PIC1301 PIC1302
COC

13

P
I
Q
4
0
1

P
I
Q
4
0
2

P
I
Q
4
0
3

PI
Q4

04

P
I
Q
4
0
5

PI
Q4

06

P
I
Q
4
0
7

P
I
Q
4
0
8

CO
Q4

PIR301 PIR302 COR
3

PIR401 PIR402 CO
R4

PIR501 PIR502 COR
5

PIR601 PIR602 CO
R6

PIC1301

PI
Q4

04

P
I
Q
4
0
5

PI
Q4

06

PIR302
PIR402

PIR502
PIR602

P
O
V
D
D
0
L
M
7
5
B

P
I
Q
4
0
3

PIR301 NL
P0

02
5(

OS
)

P
O
O
S

P
I
Q
4
0
1

PIR601

NL
P0
02
6(
SD
A)

P
O
S
D
A

P
I
Q
4
0
2

PIR501

NL
P0

02
7(

SC
L)

P
O
S
C
L

PIC1302

P
I
Q
4
0
7

P
I
Q
4
0
8

PIR401

NL
Pw
r0
O1

P
O
O
S

P
O
S
C
L

P
O
S
D
A

P
O
V
D
D
0
L
M
7
5
B

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C:
\U

se
rs

\..
\V

ol
ta

ge
_r

eg
_3

v3
_L

M
31

7_
v2

.S
ch

D
oc

D
ra

w
n

B
y:

A
D

J

1

IN
3

O
U

T
2

LM
31

7D
CY

O
1

LM
31

7D
CY

30
0

R1

G
N

D47
0

R2

D
1

D
2

D
3

10
0n

F
C1

10
µF

C2

10
0µ

F

C3 C
ap

 1
00

uF

G
N

D

IN

A
D

J

G
N

D

+3
V

3_
re

g
+1

2V
_I

N
0R9

Pw
r_

3V
3

So
nd

re
 H

aa
ve

rs
ta

d
3

5

3V
3

re
gu

la
to

r C
irc

ui
t

1.
0

PIC101 PIC102
COC

1
PIC201 PIC202

CO
C2

PIC301 PIC302
COC

3

P
I
D
1
0
1

P
I
D
1
0
2

COD
1

P
I
D
2
0
1

P
I
D
2
0
2
 COD
2

PID301 PID302
CO
D3

PIO101

PI
O1
02

PI
O1
03
 COO

1

PIR101 PIR102 COR
1

PIR201 PIR202 COR
2

PI
R9
01

PI
R9
02

COR
9

PID301
PIO101

PIR101 PIR202
NL
AD
J

PIC101
PIC202

PIC302

PIR201

PIC301

P
I
D
1
0
2

P
I
D
2
0
2

PI
O1
03

NLI
N

PIC102
PIC201

P
I
D
2
0
1

PID302
PI
O1
02

PIR102
P
O
0
3
V
3
0
r
e
g

P
I
D
1
0
1

PI
R9
02

PI
R9
01

P
O
0
1
2
V
0
I
N

P
O
0
3
V
3
0
R
E
G

P
O
0
1
2
V
0
I
N

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\R

el
ay

_1
6A

.S
ch

D
oc

D
ra

w
n

B
y:

12
P1 23

0V
 O

N
/O

FF

1

2

3

4 5

6

7

8

Q
2

23
0V

A
C

, 1
6A

+9
V

_r
eg

_r
el

ay

D
7 N

PN
BC

54
7B

T1
0

G
N

D

Re
la

y_
co

nt
ro

l
1kR1

2

0R1
6 Pw

r_
Re

la
y

So
nd

re
 H

aa
ve

rs
ta

d
5

Re
la

y
ci

rc
ui

t

4

1.
0

PID701 PID702
COD

7

PI
P1
01

PI
P1
02
 COP
1

P
I
Q
2
0
1

PIQ202
PIQ203

PIQ204 PIQ205
PIQ206

PIQ207
P
I
Q
2
0
8

COQ
2

PI
R1
20
1

PI
R1
20
2

CO
R1
2

PI
R1
60
1

PI
R1
60
2

COR
16

PIT1001
P
I
T
1
0
0
2

PIT1003 CO
T1
0

PIT1003

PID701
P
I
Q
2
0
8

PIT1001

PID702
P
I
Q
2
0
1

PI
R1
60
2

PI
P1
01

PIQ206

PI
P1
02

PIQ205

PIQ202
PIQ203

PIQ204

PIQ207
PI
R1
20
1

P
O
R
e
l
a
y
0
c
o
n
t
r
o
l

PI
R1
20
2 P
I
T
1
0
0
2

PI
R1
60
1

P
O
0
9
V
0
r
e
g
0
r
e
l
a
y

P
O
0
9
V
0
R
E
G
0
R
E
L
A
Y

P
O
R
E
L
A
Y
0
C
O
N
T
R
O
L

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
22

.0
4.

20
17

Sh
ee

t
 o

f
Fi

le
:

C:
\U

se
rs

\..
\V

ol
ta

ge
_r

eg
_9

v_
LM

31
7.

Sc
hD

ocD
ra

w
n

B
y:

A
D

J

1

IN
3

O
U

T
2

O
2

LM
31

7D
CY

30
0

R1
0

G
N

D47
0

R2
0

D
10

D
20

D
io

de
 1

N
40

02

D
30

10
0n

F
C1

0
10
µF

C2
0

10
0µ

F

C3
0

G
N

D

IN

A
D

J

G
N

D

+9
_r

eg
+1

2V
_I

N

1.
5k

R3
0

0R1
4 Pw

r_
9V

So
nd

re
 H

aa
ve

rs
ta

d
5

9V
 re

gu
la

to
r c

irc
ui

t

5

1.
0

PIC1001 PIC1002
CO
C1
0

PIC2001 PIC2002
CO
C2
0

PIC3001 PIC3002
CO
C3
0

P
I
D
1
0
0
1

P
I
D
1
0
0
2

CO
D1
0

PI
D2

00
1

PI
D2
00
2 CO

D2
0

PID3001 PID3002
CO
D3
0

PIO201

PI
O2
02

PI
O2
03
 COO

2

PIR1001 PIR1002 CO
R1
0

PI
R1
40
1

PI
R1
40
2

CO
R1
4

PIR2001 PIR2002 COR
20

PIR3001 PIR3002 COR
30

PID3001
PIO201

PIR1001 PIR2002
NL
AD
J

PIC1001
PIC2002

PIC3002

PIR3001

PIC3001

P
I
D
1
0
0
2

PI
D2
00
2

PI
O2
03

NLI
N

PIC1002
PIC2001

PI
D2

00
1

PID3002
PI
O2
02

PIR1002
P
O
0
9
0
r
e
g

P
I
D
1
0
0
1

PI
R1
40
2

PI
R1
40
1

P
O
0
1
2
V
0
I
N

PIR2001 PIR3002

P
O
0
9
0
R
E
G

P
O
0
1
2
V
0
I
N

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

Versjon (1.0)

Group 8 Bachelor’s thesis

7.6.6 System hardware result

Versjon (1.0)

Stop/return

Special cases

Remains in the same state

SYMBOLS Jan Roar M, Sondre H, Eivind S | May 11, 2017

State

Note/
declarations/

states

C-code

Decision

Predefined
Process

Receive Signal

Send Signal

Notifications

Start

Signal

Decleared function

Decision

Interrupt (callback function)

State

Start

C-code

Stop

-

While(1)

Infinite loop, not actually a
state

return

Finish a function with a return
statement

Group 8 Bachelor’s thesis

7.7 Appendix E - Software diagrams

7.7.1 Symbols description

Versjon (1.0)

UART_SEARCH_THREAD
Text Text

Variable declaration:

static uart_event_states m_uart_event_states =
SEARCING_NEW_ADR;
static uint8_t adr_nr = 0;
static adr_struct my_adr_struct;
my_adr_struct.number_of_adrs = 0;

Global definitions and structures:

#define WAITING_M _BUS_RESPONSE 100;
#define MAXIMUM_ADDRS 250

typedef struct adr_of_m_bus_struct
{

uint8_t adr_array[10];
uint8_t number_of_adrs;

} adr_struct;

typedef enum
{

SEARCHING_NEW_ADR,
WAITING_RESPONSE_STATE,
CREATE_SEND_REQ_TASK,
WAITING_STATE

} uart_event_states;

WAITING_STATE

pdTRUE

my_adr_struct.number_of_adrs=0;

SEARCING_NEW_ADR

SEARCING_NEW_ADR

pdTRUE

WAITING_RESPONSE_STATE

xSemaphoreTake
(uart_mutex_tx,

portMAX_DELAY)

xSemaphoreGive
(uart_mutex_tx,

portMAX_DELAY)

pdTRUE

xSemaphoreTake
(uart_search,

portMAX_DELAY)

m_bus_receiver_init(adr_nr);

Jan Roar M, Sondre H, Eivind S | 11-May-2017

Input to thread:
UNUSED_PARAMETER(arg);

Start

page 1 of 3

Group 8 Bachelor’s thesis

7.7.2 Thread: uart_search_thread

Versjon (1.0)

WAITING_RESPONSE_STATE

adr_nr<MAXIMUM_ADDRSadr_nr=0

(true)

CREATE_SEND_REQ_TASK

Option

my_adr_struct.number_of_adrs
!=0

Option

(false) (true)

xSemaphoreTake
(uart_event_rx_ready,

WAITING_M
_BUS_RESPONSE)

response_from_m_bus
(RESPONSE_INIT)

pdTRUE

adr_nr++

!pdTRUE

False

my_adr_struct.adr_array[my_adr_struct.number_of_adrs]=adr_nr;
my_adr_struct.number_of_adrs = my_adr_struct-number_of_adrs+1;

adr_nr++;

False

SEARCING_NEW_ADR

True

SEARCING_NEW_ADR
Response variable
from
xSemaphoreTake()

Option

Response variable
from
response_from
_m_bus()

Option

page 2 of 3

Group 8 Bachelor’s thesis

Versjon (1.0)

CREATE_SEND_REQ_TASK

xTaskCreate
(uart_task, "uart

task", 256, (void *)
&my_adr_struct, 2,

m_uart_task)

APP_ERROR_HANDLER
(NRF_ERROR_NO_MEM);

!pdPASS

adr_nr=0;

pdPASS

WAITING_STATE

Response variable
from xTaskCreate()

Option

page 3 of 3

Group 8 Bachelor’s thesis

Versjon (1.0)

UART_THREAD
Text Text

Jan Roar M, Sondre H, Eivind S | May 11, 2017

Variable declaration:

static struct aMessage *myMessage;
static uint8_t simple_counter = 0;
static uint8_t adr_counter=0;
static uart_reading_states m_uart_reading_states;
static struct adr_of_m_bus_struct *my_adr_struct;
my_adr_struct = (struct adr_of_m_bus_struct*) arg;
static uint8_t response;
static uint32_t power_32=0;

Global definitions and structures:

#define OSTIMER_WAIT_FOR_QUEUE 100
#define UART_WAITING_TO_LONG 30000

typedef enum
{

TIMER_ACTIVE_OR_NOT,
SENDING_REQUD2,
READING_RESPONSE

} uart_reading_states;

typedef struct adr_of_m_bus_struct
{

uint8_t adr_array[10];
uint8_t number_of_adrs;

} adr_struct;

SENDING_REQUD2

pdPASS
!pdPASS

APP_ERROR_HANDLER
(NRF_ERROR_NO_MEM);

xTimerStart
(m_bus_receiver_timer,

OSTIMER_WAIT_
FOR_QUEUE)

Option
Response variable
from xTimerStart()

Page 1 of 3

Input to thread:
UNUSED_PARAMETER(arg);

Start

Group 8 Bachelor’s thesis

7.7.3 Thread: uart_thread

Versjon (1.0)

SENDING_REQUD2

adr_counter <=
my_adr_struct->number_of_adrs;

Option

adr_counter ++ adr_counter =0

READING_RESPONSE

xSemaphoreTake
(m_bus_timer_timout,

portMAX_DELAY)

xSemaphoreTake
(uart_mutex_tx,

portMAX_DELAY)

FalseTrue

xSemaphoreGive
(uart_mutex_tx,

portMAX_DELAY)

app_uart_flush();

NRF_SUCCESS

m_bus_send_request((uint8_t)
my_adr_struct->adr_array[adr_counter],
C_FIELD_FCB_NOT_SET_REQUEST);

Response variable
from
app_uart_flush()

Option

Page 2 of 3

!NRF_SUCCESS

Group 8 Bachelor’s thesis

Versjon (1.0)

READING_RESPONSE

xSemaphoreTake(uart_event_rx_ready,
UART_WAITING_TO_LONG)

xSemaphoreGive
(uart_search)

!pdTRUE

vTaskDelete(NULL)

UNUSED_VARIABLE(
app_uart_get

(&response_array
[simple_counter]))

pdTRUE

telegram_structure_check
(response_array[0],
response_array[1],
response_array[2],
response_array[3]);

simple_counter == 3

True

simple_counter
++;

-

simple_counter
=0;

False

xSemaphoreTake
(m_bus_timer_timout,

portMAX_DELAY)

SENDING_REQUD2

simple_counter = 0;

simple_counter == 61

pdPASS

xQueueOverWrite
(power_msg_queue,

(void *)
&myMessage->

Power)

!pdPASS

simple_counter
++;

Default

-

Response variable
from
xSemaphoreTake()

Option

Value of
simple_counter

Option

Boolian response
variable from
telegram_structure
_check()

Option

Response variable
from
xQueueOverWrite()

Option

power_32 = (response_array[51] +
(response_array[52] <<8)) *10;

response_array[61] ==
RESPONSE_
STOP_FIELD

Option

FalseTrue

xSemaphoreGive
(power_received_

controller)

Option

Page 3 of 3

Group 8 Bachelor’s thesis

Versjon (1.0)

CONTROLLER_THREAD
Text Text

Jan Roar M, Sondre H, Eivind S | May 11, 2017

Variable declaration:

static uint32_t consume_diff;
static uint8_t hour;
static uint32_t power;
static uint8_t slave_nr;
static uint8_t slave_nr_clear;
static uint8_t lowest_priority_to_turn_off;

static struct My_data_pointers *slaves;
struct aMy_data xMy_datas[CENTRAL_LINK_COUNT];
slaves = &xMy_data_pointers;
static struct limits *p_limits;
p_limits = &xlimits;

p_limits->preferred_consume_limit = 2000;
p_limits->normal_max_consume_limit = 4000;
p_limits->max_consume_limit = 7000;

static struct aMy_data empty_struct;
empty_struct.type = '0';
empty_struct.address =0;
empty_struct.ack =0;
empty_struct.current_temp =0;
empty_struct.wanted_temp =0;
empty_struct.state =0;
empty_struct.priority= 0;
empty_struct.max_power =1;

Global definitions and structures:

#define CENTRAL_LINK_COUNT 7

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

struct limits
{

uint32_t preferred_consume_limit;
uint32_t normal_max_consume_limit;
uint32_t max_consume_limit;

} xlimits;

int i=0

i<CENTRAL_LINK_COUNTOption

xMy_datas[i] = empty_struct;
slaves->pMy_datas[i] =

&xMy_datas[i];
i++;

True

False

To page 2

page 1 of 6

Input to thread:
UNUSED_PARAMETER(arg);

Start

Group 8 Bachelor’s thesis

7.7.4 Thread: controller_thread

Versjon (1.0)

xQueueSend(data_struct,
(void*) &(slaves),
portMAX_DELAY)

xSemaphoreTake
(power_received_

controller,
portMAX_DELAY)

xQueuePeek
(power_msg_queue,

(TickType_t) 10)

Response variable
from
xQueuePeek()

Option

pdTRUE

To page 3

xQueueSend(data_struct,
(void*) &(slaves),
portMAX_DELAY)

From page 1

!pdTRUE

page 2 of 6

While (1)

While (1)

-

Group 8 Bachelor’s thesis

Versjon (1.0)

xQueueReceive
(power_msg_queue,

(TickType_t) 0)

Response variable
from
xQueueReceive()

Option

From page 2

xSemaphoreTake
(slave_on_

bin_semaphore,
(TickType_t)0)

Response variable
from
xSemaphoreTake()

Option

slave_on():

pdTRUE

xQueueReceive
(clock_hour,

&(hour),
(TickType_t)0))

!pdTRUE

print_data():

xSemaphoreTake
(data_struct_mutex,
portMAX_DELAY)

xSemaphoreGive
(data_struct_mutex)

pdTRUE!pdTRUE

slaves->pMy_datas[slave_nr_clear]
= &empty_struct;

Response variable
from
xQueueReceive()

Option

xQueueSend(data_struct_print,
(void*) &(slaves),
(TickType_t)1))

pdTRUE

!pdTRUE

To page 4

page 3 of 6

Group 8 Bachelor’s thesis

Versjon (1.0)

0xFF != slave_nr
&&
lowest_priority_to_turn_off <
slaves->pMy_datas[slave_nr]->priority
&&
slaves->pMy_datas[slave_nr]->state > 1

Option

slave_nr =
find_lowest_priority();

True

lowest_priority_to_turn_off
=19;

From page 3

False

To page 1

lowest_priority_to_turn_off
=9;

power >
p_limits->normal_max_consume_limit

Option

True

False

power > p_limits->max_consume_limitOption

lowest_priority_to_turn_off
=9;

True

To page 5

xSemaphoreTake
(data_struct_mutex,
portMAX_DELAY)

False

page 4 of 6

Group 8 Bachelor’s thesis

Versjon (1.0)

From page 4

0xFF != slave_nr
&&
lowest_priority_to_turn_off <
slaves->pMy_datas[slave_nr]->priority
&&
slaves->pMy_datas[slave_nr]->state > 1

Option

Switch:
slaves->pMy_datas[slave_nr]->type

Option

True

To page 6(nr 2)

False

slaves->pMy_datas
[slave_nr] ->state = 0;

consume_diff = power -
p_limits->

preferred_consume_limit;

type ==Ctype ==B

consume_diff > slaves->
pMy_datas[slave_nr]
->max_power

Option

slaves->pMy_datas
[slave_nr] ->state = 0;

slaves->pMy_datas
[slave_nr]->state =

floor(((10*consume_diff)/
slaves->pMy_datas

[slave_nr]->
max_power)*10);

TrueFalse

xTimerStart
(slave_on_timer,

OSTIMER_WAIT_
FOR_QUEUE)

Option
Response variable
from xTimerStart()

type == b || type == c || default

pdPASS

To page 6(nr 1)

APP_ERROR_HANDLER
(NRF_ERROR_NO_MEM); !pdPASS

page 5 of 6

Group 8 Bachelor’s thesis

Versjon (1.0)

xQueueSend(data_struct_print,
(void*) &(slaves),
portMAX_DELAY)

*From page 5(nr 1)**From page 5(nr 2)*

xSemaphoreGive
(data_struct_mutex)

page 6 of 6

-

Group 8 Bachelor’s thesis

Versjon (1.0)

page 1 of 4

Variable declarations
struct My_data_pointers *slaves
struct limits *p_limits;
static uint32_t power;
uint8_t slave_nr;
uint32_t consume_diff;
bool slaves_still_off = false;

FUNCTION: SLAVE_ON Jan Roar M, Sondre H, Eivind S | May 11, 2017

0 != data_struct && 0 !=
queue_limit_struct &&0!=
power_msg_queue

OptionFalse

To page 3

xQueuePeek(data_struct,
&(slaves),(TickType_t)0)

True

Response variable from
xSemaphorePeek()

Option

!pdTRUE

xQueuePeek
(queue_limit_struct,

&(p_limits),(TickType_t)0)

Response variable from
xSemaphorePeek()

Option

True

!pdTRUE

xQueuePeek
(power_msg_queue,

&(power),(TickType_t)0)

Response variable from
xSemaphorePeek()

Option

pdTRUE

!pdTRUE

pdTRUE

To page 2

Global definitions and structures:

#define OSTIMER_WAIT_FOR_QUEUE 100

struct aMy_data
{

uint8_t type;
uint8_t address;

uint8_t ack;
uint8_t state;

int8_t wanted_temp;
int8_t current_temp;

uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];

} xMy_data_pointers;

Group 8 Bachelor’s thesis

Versjon (1.0)

page 2 of 4

slave_nr =
find_highest_priority();

From page 1

(power<p_limets->preferred_consume_limit)
||
(slaves->pMy_datas[slave_nr]->priority<19
&& p_limits->normal_max_consume_limit)
||
(slaves->pMy_datas[slave_nr]->priority<10
&& p_limits->max_consume_limit)

Option

pdTRUE

xSemaphoreTake
(data_struct_mutex,

(TickType_t)100)

Response variable
from
xSemaphoreTake()
&&
slave_nr !==0xFF

Option

True

Option

To page 3(nr 2)

slaves
->pMydatas[slave_nr]
->type

Option

slaves
->pMy_datas

[slave_nr] ->state
= 100;

consume_diff= p_limits
->preferred_consume_limit

- power;

B B

consume_diff>(slaves
->pMy_datas[slave_nr]
->max_power)

Option

slaves
->pMy_datas[slave_nr]

->state = 100;

slaves ->pMy_datas[slave_nr]
->state = floor

(((10*consume_diff)/
((slaves->pMy_datas[slave_nr]

->max_power))*10);

False
True

To Page 3(nr 1)

b || c || D || default

Group 8 Bachelor’s thesis

Versjon (1.0)

page 3 of 4

slaves
->pMy_datas[slave_nr]

->ack = 0;

From page 2(nr 1)

xQueueSend(slave_nr_send_data,
(void*) &(slaves),
portMAX_DELAY)

xSemaphoreGive
(data_struct_mutex)

int i=0

i<CENTRAL_LINK_COUNTOption

slaves->pMy_datas[i] ->state
<100
&&
'0' != slaves -pMy_datas[i]
->type

Option

True

False

To page 4

slaves_still_off = true;

True

From page 1 and 2(nr 2)

i++; False

Group 8 Bachelor’s thesis

Versjon (1.0)

page 4 of 4

slaves_still_offOption

From page 3

False

True

xTimerStart(slave_on_timer,
OSTIMER_WAIT_FOR_QUEUE)

Response variable
from xTimerStart

Option

pdPASS

!pdPASS

APP_ERROR_HANDLER
(NRF_ERROR_NO_MEM);

Group 8 Bachelor’s thesis

Versjon (1.0)

Global definitions and structures:

#define CENTRAL_LINK_COUNT 7

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

Variable declarations:

struct My_data_pointers *slaves;
uint8_t slave_highest_priority = 0xFF;
uint8_t highest_priority = 0xFF;

FUNCTION: FIND_HIGHEST_PRIORITY Jan Roar M, Sondre H, Eivind S | May 11, 2017

0!=data_structOption

xQueuePeek
(data_struct,

&slaves
(TickType_t)0)

Response variable
from xQueuePeek

Option

True

xSemaphoreTake
(data_struct,

(TickType_t)10)

Response variable
from
xSemaphoreTake

Option

pdTRUE

pdTRUE

To page 2(nr 1)

page 1 of 2

return
slave_highest_priority;

!pdTRUE

!pdTRUE

False

Group 8 Bachelor’s thesis

Versjon (1.0)

int i=0

i<=CENTRAL_LINK_COUNTOption

100 > slaves->pMy_datas[i]->state
&&
slaves->pMy_datas[i]->priority <highest_priority
&&
slaves->pMy_datas[i]->type != '0'

Option

True

slaves_highest_priority=i;
highest_prority =

slaves->pMy_datas[i]->priority;

True

i++; False

From page 1(nr 1)

xSemaphoreGive(data_struct_mutex)

page 2 of 2

False

return
slave_highest_priority;

Group 8 Bachelor’s thesis

Versjon (1.0)

Global definitions and structures:

#define CENTRAL_LINK_COUNT 7

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

Variable declarations:

struct My_data_pointers *slaves;
uint8_t slave_lowest_priority = -1;
uint8_t lowest_diff = 100;
uint8_t temp_diff;

FUNCTION: FIND_LOWEST_PRIORITY Jan Roar M, Sondre H, Eivind S | May 11, 2017

page 1 of 3

0!=data_structOptionFalse

xQueuePeek
(data_struct,

&slaves
(TickType_t)0)

Response variable
from xQueuePeek

Option

True

!pdTRUE

To page 3

pdTRUE

To page 2

Group 8 Bachelor’s thesis

Versjon (1.0)

page 2 of 3

int i=0

i<=CENTRAL_LINK_COUNT-1Option

5 <= slaves->pMy_datas[i]->priority->stateOption

True

True

i++; False

From page 1

False

To page 3

slaves->pMy_datas[i]->priority
>slave_lowest_priority

Option

slave_lowest_priority = slaves->pMy_datas[i]->priority;
slave_lowest_priority = i;

True

slaves->pMy_datas[i]->priority
==slave_lowest_priority

Option

False

temp_diff = slaves->pMy_datas[i]->wanted_temp -
slaves->pMy_datas[i]->current_temp;

True

temp_diff < lowest_diffOption

lowest_diff = temp_diff;
slave_lowest_priority = i;

True

False

Group 8 Bachelor’s thesis

Versjon (1.0)

page 3 of 3

-1 == slave_lowest_priorityOption

slave_lowest_priority = 0xFF;

True

From page 2

False

From page 1

return
slave_lowest_priority;

Group 8 Bachelor’s thesis

Versjon (1.0)

THREAD: SEND_DATA_THREAD Jan Roar M, Sondre H, Eivind S | May 11, 2017

Global definitions and structures:

#define ELEMENTS_IN_xMy_data_STRUCT 7

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data *pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

Input to thread:
UNUSED_PARAMETER(arg);

Variable declaration:

static struct My_data_pointers *slaves;

static uint8_t slave_nr;
static uint8_t data[ELEMENTS_IN_xMy_data_STRUCT];

uint32_t err_code;
EventBits_t bits = xEventGroupGetBits(waiting_ack);

xQueuePeek
(data_struct,

&slaves,
portMAX_DELAY)

0!=slave_nr_send_data
&&
0 != data_struct

OptionFalse

To page 2

page 1 of 4

Start

While(1)

While(1)

-

Group 8 Bachelor’s thesis

7.7.5 Thread: send_data_thread

Versjon (1.0)

page 2 of 4

xSemaphoreGive
(data_struct_mutex)

xSemaphoreTake
(data_struct_mutex,
(TickType_t) 10)

Response variable
from
xSemaphoreTake()

Option

To page 1

data[0] = SLAVE_TYPE;
data[1]=slaves->pMy_datas[slave_nr]->address;

data[3]=slaves->pMy_datas[slave_nr]->state;
data[4]=slaves->pMy_datas[slave_nr]->wanted_temp;

pdTRUE

!pdTRUE

1==slaves->pMy_datas[slave_nr]->ackOption

True

To page 3

False

To page 4

Group 8 Bachelor’s thesis

Versjon (1.0)

page 3 of 4

data[2]=1;

From page 2

ble_nus_c_string_send(&m_ble_nus_c[slave_nr]
,data,ELEMENTS_IN_xMy_data_STRUCT);

-

Group 8 Bachelor’s thesis

Versjon (1.0)

page 4 of 4

data[2]=1;

From page 3

1 == (bits & (1 << slave_nr))Option

True

err_code = ble_nus_c_string_send(&m_ble_nus_c[slave_nr]
,data,ELEMENTS_IN_xMy_data_STRUCT);

False

err_code == NRF_SUCCESSOption

xEventGroupSetBits(waiting_ack, 1
<<slave_nr)

True

app_timer_start(ack_timer,
APP_TIMER_TICKS(ACK_WAIT_INTERVAL,

APP_TIMER_PRESCALER),NULL);

False

-

Group 8 Bachelor’s thesis

Versjon (1.0)

FUNCTION: BLE_NUS_C_EVT_HANDLER
Text Text

Jan Roar M, Sondre H, Eivind S | May 11, 2017

page 1 of 6

This function is called to notify the
application of NUS client events.

From the other slaves.

Input to function:
ble_nus_c_t * p_ble_nusc

(NUS client handle. This identifies the
NUS client)

const ble_nus_c_evt_t * p_ble_nus_evt
(Pointer to the NUS Client event)

Variable declaration:
uint32_t err_code;
struct my_data_pointers *slaves;
static uint16_t slave_nr;

Global definitions and structures:

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

slave_nr =
p_ble_nus_c->conn_handle;

0!=data_structOption

xQueuePeek
(data_struct,

&slaves
portMAX_DELAY)

True

To page 2

False

To page 2

Start

Group 8 Bachelor’s thesis

7.7.6 Function: ble_nus_c_evt_handler

Versjon (1.0)

page 2 of 6

p_ble_nus_evt->evt_typeOption

From page 1

err_code =
ble_nus_c_handlel_assign

(p_ble_nus_c,
p_ble_nus_evt->conn_handle,

&p_ble_nus_evt->handles);

BLE_NUS_C_EVT_DISCOVERY_COMPLETE

APP_ERROR_CHECK(err_code);

err_code =
ble_nus_c_rx_notif_enable

(p_ble_nus_c);

APP_ERROR_CHECK(err_code);

adv_scan_start():

BLE_NUS_C_EVT_DISCONNECTED

err_code = bsp_indication_set
(BSP_INDICATE_RCV_OK);

BLE_NUS_C_EVT_NUS_RX_EVT

To page 3

Group 8 Bachelor’s thesis

Versjon (1.0)

page 3 of 6

p_ble_nus_evt->p_data[0]Option

From page 2

xSemaphoreTake
(data_struct_mutex,

(TickType_t)10)

Response variable
from
xSemaphoreTake

Option

'B'

'C'
To page 5

'b' || 'c' || 'D' || 'd' || default

To page 6

slaves->pMy_datas[slave_nr]
->priority != p_ble_nus_evt
->p_data[6]

&&

p_ble_nus_evt->p_data[6]
<=19

Option

pdTRUE

!pdTRUE

False

slaves->pMy_datas[slave_nr]->priority = p_ble_nus_evt->p_data[6];

True

xSemaphoreGive(slave_on_bin_semaphore)

Response variable
from
xSemaphoreGive

Option

pdTRUE

To page 4

Group 8 Bachelor’s thesis

Versjon (1.0)

slaves->pMy_datas[slave_nr]->type = p_ble_nus_evt->p_data[0];
slaves->pMy_datas[slave_nr]->address = slave_nr;

slaves->pMy_datas[slave_nr]->state = p_ble_nus_evt->p_data[3];
slaves->pMy_datas[slave_nr]-> current_temp = p_ble_nus_evt->p_data[5];

slaves->pMy_datas[slave_nr]->priority = p_ble_nus_evt->p_data[6];

From page 3

page 4 of 6

0 == p_ble_nus_evt->p_data[2]Option

slaves->pMy_datas[slave_nr]->ack = 1;

True

slaves->pMy_datas[slave_nr]->ack = 0;

False

app_timer_stop(ack_timer);

xEventGroupClearBits(waiting_ack, 1
<<slave_nr)

UNUSED_VARIABLE
(xSemaphoreGive(data_struct_mutex))

To page 6

Group 8 Bachelor’s thesis

Versjon (1.0)

xSemaphoreTake
(data_struct_mutex,

(TickType_t)10)

Response variable
from
xSemaphoreTake

Option!pdTRUE

To page 6

From page 3

page 5 of 6

slaves->pMy_datas[slave_nr]->type = p_ble_nus_evt->p_data[0];
slaves->pMy_datas[slave_nr]->address = slave_nr;

slaves->pMy_datas[slave_nr]->state = p_ble_nus_evt->p_data[3];
slaves->pMy_datas[slave_nr]-> current_temp = p_ble_nus_evt->p_data[5];

slaves->pMy_datas[slave_nr]->priority = p_ble_nus_evt->p_data[6];

pdTRUE

0 == p_ble_nus_evt->p_data[2]Option

slaves->pMy_datas[slave_nr]->ack = 1;

True

slaves->pMy_datas[slave_nr]->ack = 0;

False

app_timer_stop(ack_timer);

xEventGroupClearBits(waiting_ack, 1
<<slave_nr)

UNUSED_VARIABLE
(xSemaphoreGive(data_struct_mutex))

To page 6

Group 8 Bachelor’s thesis

Versjon (1.0)

page 6 of 6

255 == p_ble_nus_evt->p_data[1]
||
0 == p_ble_nus_evt->p_data[2]

Option

From page 3 & 4 & 5

xQueueSend(slave_nr_send_data, (void *)
&slave_nr, portMAX_DELAY)

True

Group 8 Bachelor’s thesis

Versjon (1.0)

This function is called to notify the
application of NUS client events.

From the smartphone

Input to function:
ble_nus_t * p_nus
(Nordic UART Service structure)
uint8_t * p_data
(The received data)
uint16_t lenght
(Length of the data.)

Variable declaration:
struct My_data_pointers *slaves;
struct limits*p_limits;
static uint8_t temp;
static uint8_t slave_nr;
static uint8_t hour;
static uint8_t minute;
static uint32_t max_power_slave;
static uint16_t err_code;
char number[20]="";
char msg[20]="";

Global definitions and structures:

struct aMy_data
{

uint8_t type;
uint8_t address;
uint8_t ack;
uint8_t state;
int8_t wanted_temp;
int8_t current_temp;
uint8_t priority;
uint32_t max_power

}

struct My_data_pointers
{

struct aMy_data
*pMy_datas[CENTRAL_LINK_COUNT];
} xMy_data_pointers;

struct limits
{

uint32_t preferred_consume_limit;
uint32_t normal_max_consume_limit;
uint32_t max_consume_limit;

}xlimits;

FUNCTION: NUS_DATA_HANDLER
Text Text

Jan Roar M, Sondre H, Eivind S | May 11, 2017

Option

xQueuePeek
(data_struct,

&slaves
(TickType_t)0)

Option

True

pdTRUE

To page 2

False

!pdTrue

0!=data_struct

Response variable
from xQueuePeek

page 1 of 6

Group 8 Bachelor’s thesis

7.7.7 Function: nus_data_handler

Versjon (1.0)

From page 1

Option

't'==p_data[0]
&&
'e'==p_data[1]
&&
'm'== p_data[2]
&&
 'p'==p_data[3]

False
To page 3

slave_nr=(p_data[4]-'0')*10+(p_data[5]-'0');
temp=(p_data[6]-'0')*10+(p_data[7]-'0');

True

xSemaphoreTake
(data_struct_mutex,

(TickType_t)10)

Response variable
from
xSemaphoreTake

Option!pdTRUE

To page 6

'-' == p_data[8]Option

pdTRUE

slaves->pMy_datas[slave_nr]
->wanted_temp=-temp;

slaves->pMy_datas[slave_nr] ->wanted_temp=temp;

TrueFalse

sprintf(msg,"Slave:%d\n",slave_nr);

sprintf(number,"Set
to:%uC\n",slaves->pMy_datas[slave_nr]->wanted_temp);

xSemaphoreGive(data_struct_mutex)

Response variable
from
xSemaphoreGive

Option

xQueueSend(slave_nr_send_data, (void *)
&slave_nr, (TickType_t) 10)

Response variable
from xQueueSend

Option

pdTRUE

pdPASS!pdPASS

To page 6 page 2 of 6

Group 8 Bachelor’s thesis

Versjon (1.0)

page 3 of 6

Option

'c'==p_data[0]
&&
'1'==p_data[1]
&&
'0'== p_data[2]
&&
 'c'==p_data[3]

From page 2

False

To page 4

hour = (p_data[5]-'0')*10 + (p_data[6]-'0');
minute = (p_data[7]-'0')*10 + (p_data[8]-'0');

True

Option
hour <24
&&
minute <60

False

(xQueueSend(clock_minutes_from_app,
(void *) &minute, (TickType_t) 10)

Response variable
from
xSemaphoreGive

Option

True

(xQueueSend(clock_hour_from_app,
(void *) &minute, (TickType_t) 10)

Response variable
from xQueueGive

Option

pdPASS

pdPASS

!pdPASS

!pdPASS

To page 6

(void)strncpy(msg,"Wrong value",sizeof(msg));

(void)strncpy(msg,"Wrong value",sizeof(msg));

Group 8 Bachelor’s thesis

Versjon (1.0)

page 4 of 6

Option

'p'==p_data[0]
&&
'o'==p_data[1]
&&
'w'== p_data[2]
&&
 'e'==p_data[3]
&&
 'r'==p_data[3]

From page 3

slave_nr = (p_data[5]-'0')*10 + (p_data[6]-'0');
max_power_slave = (p_data[7]-'0')*1000 +

(p_data[8]-'0')*100 + (p_data[9]-'0')*10 +(p_data[10]-'0');
slaves->pMy_datas[slave_nr]->max_power =

max_power_slave;

True

False

To page 5

sprintf(msg,"Slave:%d\n",slave_nr);

sprintf(number,"Set to: %"PRIu32"
Watt\n",max_power_slave);

xQueueSend(slave_nr_send_data, (void
*) &slave_nr, (TickType_t) 0)

To page 6

Group 8 Bachelor’s thesis

Versjon (1.0)

Option

'l'==p_data[0]
&&
'i'==p_data[1]
&&
'm'== p_data[2]
&&
 'i'==p_data[3]
&&
 't'==p_data[3]

From page 4

True

False

(void)strncpy(msg,"Wrong NUS
cmd",sizeof(msg));

To page 6

Option p_data[5]

p_limits->preferred_consume_limit =
(p_data[6]-'0')*10000+(p_data[7]-'0')*1000 +

(p_data[8]-'0')*100 + (p_data[9]-'0')*10 +
(p_data[10]-'0');

sprintf(msg,"Pref lim set\n");

sprintf(number,"Set to: %"PRIu32"
Watt\n",p_limits->preferred_consume_limit);

p_limits->normal_max_consume_limit =
(p_data[6]-'0')*10000+(p_data[7]-'0')*1000 +

(p_data[8]-'0')*100 + (p_data[9]-'0')*10 +
(p_data[10]-'0');

sprintf(msg,"Norm lim set\n");

sprintf(number,"Set to: %"PRIu32"
Watt\n",p_limits->normal_max_consume_limit);

p_limits->max_consume_limit =
(p_data[6]-'0')*10000+(p_data[7]-'0')*1000 +

(p_data[8]-'0')*100 + (p_data[9]-'0')*10 +
(p_data[10]-'0');

sprintf(msg,"Max cons lim set\n");

sprintf(number,"Set to: %"PRIu32"
Watt\n",p_limits->max_consume_limit);

(void)strncpy(msg, "Wrong cmd",sizeof(msg));

'p'

'h'

'n'

!'p' && !'n' && !'h'

To page 6 *To page 6*

To page 6

To page 6

page 5 of 6

Group 8 Bachelor’s thesis

Versjon (1.0)

page 6 of 6

ble_nus_string_send(&m_nus, (uint8_t*)msg,
strlen(msg));

err_code = ble_nus_string_send(&m_nus,
(uint8_t*)number, strlen(number));

From page 2, 3, 4 and 5

Group 8 Bachelor’s thesis

Versjon (1.0)

D:\Programming\nRF5_SDK_12.2.0_f012efa\examples\ble_peripheral\ble_freertos_bachelor_work_on_this_one\m_bus_receiver.h

Page 1

1 /** @file
2 *
3 * @defgroup m_bus_receiver
4 *
5 * @brief Used in connection with m_bus power meter
6 *
7 * @details This header file contains different functions regarding the connection between a

micro-controller and
8 * the m_bus power meter. The different connections is initializing, changing the m-bus

receivers primary address,
9 * and also resetting the partial power of the m_bus

10 * This also features different checks.
11 *
12 * @note Some of the function should be protected by a mutex when used in a application with a RTOS

type
13 *
14 */
15 #ifndef M_BUS_RECEIVER
16 #define M_BUS_RECEIVER
17
18 #include <stdint.h>
19 #include <stdbool.h>
20 #include <string.h>
21
22 #define MAXIMUM_ADDRS 250
23
24 /*
25 Initialisation definitions
26 */
27 #define START_INIT 0x10 //Start field value
28 #define SEND_OR_REPLY_INIT 0x40 //Send or reply, reset- field value
29 #define STOP_INIT 0x16 //Stop field value.
30
31 #define TOTAL_LENGTH_INIT_FRAME 0x05 //Total length of the init telegram
32 #define RESPONSE_INIT 0XE5 //Response from m_bus after initialisation
33
34 /*
35 Changing primary address definitions
36 */
37 #define START_CHANGING_ADDR 0x68 //Start field value
38 #define FIELD_LENGHT_CHANGING_ADDR 0x06 //Field Length value
39 #define C_FIELD_CHANGING_ADDR 0x68 //C field value
40 #define CI_FIELD_CHANGING_ADDR 0x51 //CI field value
41 #define DIF_FIELD_CHANGING_ADDR 0x01 //DIF field value
42 #define VIF_FIELD_CHANGING_ADDR 0x7A //VIF field value
43 #define STOP_FIELD_CHANGING_ADDR 0x16 //Stop field value
44
45 #define TOTAL_LENGTH_CHANGING_ADDR 0x0C //Total length of the changing primary address telegram
46 #define RESPONSE_CHANGING_ADDR 0xE5 //Response from m_bus after changing the primary address.
47
48 /*
49 Reset ACC(application reset)
50 */
51 #define START_RESET_ACC 0x68 //Start field value
52 #define FIELD_LENGTH_RESET_ACC 0x03 //Field length value
53 #define C_FIELD_RESET_ACC 0x53 //C field value
54 #define CI_FIELD_RESET_ACC 0x50 //CI field value
55 #define STOP_FIELD_RESET_ACC 0x16 //Stop field value
56
57 #define TOTAL_LENGTH_RESET_ACC 0x09 //Total length of the application reset telegrame
58 #define RESPONSE_RESET_ACC 0xE5 //Response from m_bus after application reset
59
60 /*
61 Reset total partial power
62 */
63 #define START_RESET_PARTIAL 0x68 //Start field value
64 #define FIELD_LENGTH_RESET_PARTIAL 0x04 //Field length value
65 #define C_FIELD_RESET_PARTIAL 0x53 //C field value
66 #define CI_FIELD_RESET_PARTIAL 0x50 //CI field value
67 #define RESET_COUNTER_PARTIAL 0x01 //Reset counter field value
68 #define STOP_FIELD_RESET_PARTIAL 0x16 //Stop field value
69

Group 8 Bachelor’s thesis

7.7.8 Header file: m_bus_receiver.h

Versjon (1.0)

D:\Programming\nRF5_SDK_12.2.0_f012efa\examples\ble_peripheral\ble_freertos_bachelor_work_on_this_one\m_bus_receiver.h

Page 2

70 #define TOTAL_LENGTH_RESET_PARTIAL 0x0A //Total length of the partial power reset telegram
71 #define RESPONSE_RESET_PARTIAL 0xE5 //Response from m_bus after partial power reset.
72
73 /*
74 REQ_UD2: Definitions for requesting data from m_bus receiver
75 */
76 #define START_REQUEST 0x10 //Start field value
77 #define C_FIELD_FCB_NOT_SET_REQUEST 0x5B //C field value with FCB bit set to 0
78 #define C_FIELD_FCB_SET_REQUEST 0x7B //C field value with FCB bit set to 1
79 #define STOP_REQUESET 0x16 //Stop field value
80
81 #define TOTAL_LENGHT_REQUEST 0x05 //Totalt length of the REQ_UD2 telegram.
82 //Response from REQ_UD2 is a 62 bytes telegram from the m_bus receiver.
83
84 /*
85 Definition used for response telegram from m_bus after REQ_UD2 reguest.
86 */
87 #define RESPONSE_START_FIELD 0x68 //1 and 4 byte in the telegram
88 #define RESPONSE_L_READ 0x38 //2 and 3 byte in the telegram
89 #define RESPONSE_STOP_FIELD 0x16 //62 byte in the telegram
90
91
92 /*
93 States used in the uart_search_thread
94 */
95 typedef enum
96 {
97 SEARCING_NEW_ADR,
98 WAITING_RESPONSE_STATE,
99 CREATE_SEND_REQ_TASK,

100 WAITING_STATE
101 } uart_event_states;
102
103 /*
104 States used in the uart_thread
105 */
106 typedef enum
107 {
108 TIMER_ACTIVE_OR_NOT,
109 SENDING_REQUD2,
110 READING_RESPONSE
111 } uart_reading_states;
112
113
114 /*
115 Structure to save the values from the m_bus receiver. (currently not in use)
116 */
117 struct aMessage
118 {
119 uint32_t Message_number;
120 uint8_t adr;
121 uint8_t STAT;
122 uint32_t Total_power;
123 uint32_t Partial_power;
124 uint16_t Voltage;
125 uint16_t Current;
126 uint16_t Power;
127 uint16_t Reactive_power;
128 } xMessage;
129
130 /*
131 Structure to hold address of m_bus and number of adrs.
132 */
133 typedef struct adr_of_m_bus_struct
134 {
135 uint8_t adr_array[10];
136 uint8_t number_of_adrs;
137 } adr_struct;
138
139 /**@brief Function for initializing the m-bus receiver
140 *
141 * @details This should be protected by a mutex when using a RTOS.

Group 8 Bachelor’s thesis

Versjon (1.0)

D:\Programming\nRF5_SDK_12.2.0_f012efa\examples\ble_peripheral\ble_freertos_bachelor_work_on_this_one\m_bus_receiver.h

Page 3

142 *
143 *
144 *
145 * @param[in] adr_off_m_bus The adresse to the m_bus receiver
146 *
147 */
148 void m_bus_receiver_init(uint8_t adr_off_m_bus);
149
150
151 /**@brief Function for changing the m-bus receivers primary address
152 *
153 * @details This should be protected by a mutex when using a RTOS.
154 *
155 *
156 *
157 * @param[in] primary_adr_off_m_bus The primary adress off the m-bus receiver
158 * @param[in] new_address_off_m_bus The new adress that we want to set the m-bus receiver to
159 *
160 */
161 void m_bus_receiver_changing_primary_address(uint8_t primary_adr_off_m_bus, uint8_t

new_address_off_m_bus);
162
163
164 /**@brief Function for resetting the m-bus receiver
165 *
166 * @details This should be protected by a mutex when using a RTOS.
167 *
168 *
169 *
170 * @param[in] primary_adr_off_m_bus The primary adress off the m-bus receiver
171 *
172 */
173 void m_bus_receiver_reset_application(uint8_t primary_adr_off_m_bus);
174
175
176 /**@brief Function for resetting the m-bus receiver partial power
177 *
178 * @details This should be protected by a mutex when using a RTOS.
179 *
180 *
181 *
182 * @param[in] primary_adr_off_m_bus The primary adress off the m-bus receiver
183 *
184 */
185 void m_bus_receiver_reset_partial_power(uint8_t primary_adr_off_m_bus);
186
187
188 /**@brief Function for requesting telegram from the uart module (REQ_UD2)
189 *
190 * @details M_bus_receiver requires a REQ_UD2 query in order to send response. The response is a RSP_UD

telegram 62 bytes.
191 * This should be protected by a mutex when using a RTOS.
192 *
193 *
194 * @param[in] adr_off_m_bus The adress of the m_bus_receiver that we want response from.
195 * @param[in] c_field The c-field, with or without fcb set.
196 *
197 */
198 void m_bus_send_request(uint8_t primary_adr_off_m_bus, uint8_t c_field);
199
200
201 /**@brief Function for checking response from the m_bus_receiver
202 *
203 * @details Response from the m_bus_receiver should be 0xE5 after when sending everything else then

REQ_UD2
204 *
205 *
206 *
207 * @param[in] exp_response The expected response from the m_bus receiver
208 *
209 * @retval True if the response from m_bresponse_from_m_busus_receiver is 0xE5 (#define RESPONSE 0xE5)
210 */

Group 8 Bachelor’s thesis

Versjon (1.0)

D:\Programming\nRF5_SDK_12.2.0_f012efa\examples\ble_peripheral\ble_freertos_bachelor_work_on_this_one\m_bus_receiver.h

Page 4

211 bool response_from_m_bus (uint8_t exp_response);
212
213 /**@brief Function for checking that the start of telegram is correct
214 *
215 * @details Checking that the first 4 bytes of a RSP_UP is correct.
216 * byte0 == RESPONSE_START_FIELD
217 * byte1 == RESPONSE_L_READ
218 * byte2 == RESPONSE_L_READ
219 * byte3 == RESPONSE_START_FIELD
220 *
221 * @param[in] byte0 First byte of the RSP_UD
222 * @param[in] byte1 Second byte of the RSP_UD
223 * @param[in] byte2 Third byte of the RSP_UD
224 * @param[in] byte3 Fourth byte of the RSP_UD
225 *
226 * @retval True is the 4 first byte is correct
227 */
228 bool telegram_structure_check (uint8_t byte0, uint8_t byte1, uint8_t byte2, uint8_t byte3);
229
230
231 /**@brief Function for decoding bcd.
232 *
233 * @details Takes in a bcd decoded byte and turn it in to a integer
234 *
235 *
236 *
237 * @param[in] The value that is coded in bcd
238 *
239 * @retval The value in a uint type
240 */
241 uint8_t bcdtobyte(uint8_t bcd);
242
243
244 /**@brief Function to check for correct checksum
245 *
246 * @details Calculates the checksum by adding c_field, adr and ci_field and compares this with the

expected checksum
247 *
248 * @param[in] c_field The c-field, with or without fcb set
249 * @param[in] adr Address of the m_bus meter
250 * @param[in] ci_field CI field
251 * @param[in] checksum Expected checksum
252 *
253 * @retval True if the expected cheksum is the same as the calculated
254 */
255 bool correct_checksum(uint8_t c_field, uint8_t adr, uint8_t ci_field, uint8_t checksum);
256
257
258 #endif //M_BUS_RECEIVER
259

Group 8 Bachelor’s thesis

Versjon (1.0)

	Introduction
	Background
	Problem statement
	Literature review
	Prerequisites and Limitations
	Problem solution
	Project plan
	Report outline

	Theoretical background
	Smart power meter(AMS)
	M-BUS Tranceiver
	Singlephase energy meter with M-Bus interface
	Connecting via M-BUS

	M-BUS protocol
	Universal Asynchronous Receiver/Transmitter(UART) protocol
	Protocol research
	Zigbee
	Z-wave
	WIFI
	Bluetooth 4 low energy
	Thread
	Universal powerline bus
	Insteon

	The nRF52
	Design patterns
	Event driven
	Finite state machine
	Multitasking
	FreeRTOS

	Powering and loads
	Switch mode power supply
	Loads

	Solution
	Requirements
	Functional requirements
	Non functional requirements

	Design Specifications
	Master - slave protocol
	Hardware
	Master hardware specification
	Software tools
	Master software
	Slave hardware specification
	Slave software

	Implementation
	Code imlementation
	Nordic UART protocol
	Priority algorithm
	Master memory allocation
	Master block schematic software
	Master hardware
	Slave software
	Slave code implementation
	Slave hardware

	Validation & Testing

	Discussion
	Conclusion
	References
	Appendices
	Appendix A - Abbreviations & Glossary
	List of Figures
	Appendix B - Meeting/Gantt diagram/Timesheets
	Given Task
	Guidance meetings
	Group meetings
	Gantt diagram
	Timesheet Eivind Stendal
	Timesheet Sondre Håverstad
	Timesheet Jan Roar T. Mydland
	Timesheet Total

	Appendix C - Press release in Norwegian
	Appendix D - Test reports
	Testing of the simple M-BUS transceiver circuit
	Testing of the LM317 - 12V to 3v3 regulator circuit
	Testing of the complete slave device circuit
	Testing of the LT1072 - Buck boost converter circuit
	Testing of the complete master circuit
	Test master software
	Test slave software

	Appendix E - Hardware schematics
	BOM Master
	Master schematics & overview
	Result master PCB
	BOM Slave
	Slave schematics & overview
	System hardware result

	Appendix E - Software diagrams
	Symbols description
	Thread: uart_search_thread
	Thread: uart_thread
	Thread: controller_thread
	Thread: send_data_thread
	Function: ble_nus_c_evt_handler
	Function: nus_data_handler
	Header file: m_bus_receiver.h

